Home
Class 11
MATHS
In a DeltaABC, if cos C = (sin A)/(2 sin...

In a `Delta`ABC, if cos C = `(sin A)/(2 sin B)`, show that the triangle is isosceles.

Text Solution

Verified by Experts

The correct Answer is:
`b^(2) - c^(2) = 0 rArr b^(2) = c^(2) rArr b = c `
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRY

    SURA PUBLICATION|Exercise EXERCISE 3.10|16 Videos
  • TRIGONOMETRY

    SURA PUBLICATION|Exercise EXERCISE 3.11|6 Videos
  • TRIGONOMETRY

    SURA PUBLICATION|Exercise EXERCISE 3.8|18 Videos
  • SURAS MODEL QUESTION PAPER -2

    SURA PUBLICATION|Exercise section -IV|7 Videos
  • TWO DIMENSIONAL ANALYTICAL GEOMETRY

    SURA PUBLICATION|Exercise ADDITIONAL PROBLEMS - SECTION - D|3 Videos

Similar Questions

Explore conceptually related problems

In Delta ABC,if cos A+sin A-2/(cosB+sin B)=0, then the value of ((a+b)/c)^4 is

BE and CF are two equal altitudes of a triangle ABC. Using RHS congruence rule, prove that the triangle ABC is isosceles.

In a triangle ABC, sin^(2)A + sin^(2)B + sin^(2)C = 2 , then the triangle is

IF in Delta ABC , sin A/2 sin C /2 =sin B/2 and 2s is the perimeter of the triangle then s is

In a Delta ABC sin Asin B sin C <= (3sqrt3)/8

If in Delta ABC, 8R^(2) = a^(2) + b^(2) + c^(2) , then the triangle ABC is

In a triangle ABC , if cos A cos B + sin A sin B sin C = 1 , then a:b:c is equal to

If in a triangle ABC, (bc)/(2 cos A) = b^(2) + c^(2) - 2bc cos A then prove that the triangle must be isosceless

In a Delta ABC, if (i)sin (A)/(2) sin"" (B)/(2) sin"" (C )/(2) gt 0 (ii)sin AsinBsinC gt 0