Home
Class 11
MATHS
In a DeltaABC, angleA = 60^(@), prove th...

In a `Delta`ABC, `angleA = 60^(@),` prove that b + c = 2a cos `((B - C)/(2))`.

Text Solution

Verified by Experts

The correct Answer is:
k sin B + k sin C = b + c
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRY

    SURA PUBLICATION|Exercise EXERCISE 3.10|16 Videos
  • TRIGONOMETRY

    SURA PUBLICATION|Exercise EXERCISE 3.11|6 Videos
  • TRIGONOMETRY

    SURA PUBLICATION|Exercise EXERCISE 3.8|18 Videos
  • SURAS MODEL QUESTION PAPER -2

    SURA PUBLICATION|Exercise section -IV|7 Videos
  • TWO DIMENSIONAL ANALYTICAL GEOMETRY

    SURA PUBLICATION|Exercise ADDITIONAL PROBLEMS - SECTION - D|3 Videos

Similar Questions

Explore conceptually related problems

In a triangle ABC, prove that (b + c)/(a) le cosec.(A)/(2)

In a Delta ABC, prove that a ( cos B + cos C) = 2 (b + c) sin^(2)""(A)/(2)

In a triangleABC, prove that a cos A+b cos B+c cos C=2a sin B sin C

If A + B + C = 180^(@) , prove that cos A + cos B - cos C = -1 + 4 cos (A)/(2) cos"" (B)/(2) sin"" (C )/(2)

In A B C , prove that cos e c A/2+cos e c B/2+cos e c C/2geq6.

In a Delta ABC, prove that (a^(2) - c^(2))/(b^(2)) = (sin (A - C))/(sin(A + C))

In a Delta ABC, prove that (a sin(B - C))/(b^(2) - c^(2)) = (b sin (C - A))/(c^(2) - a^(2)) = (c sin (A - B))/(a^(2) - b^(2))

If A + B + C = 180^(@) , prove that sin A + sin B + sin C = 4 cos (A)/(2) cos"" (B)/(2) cos"" (C )/(2)

In any triangle ABC, prove that a cos A+b cos B +c cos C =(8 triangle^(2))/(abc) .