Home
Class 11
MATHS
In a DeltaABC, prove that a ( cos B + ...

In a `Delta`ABC, prove that
a ( cos B + cos C) = 2 (b + c) `sin^(2)""(A)/(2)`

Text Solution

Verified by Experts

The correct Answer is:
`2 (b + c) sin^(2)"" (A)/(2)`
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRY

    SURA PUBLICATION|Exercise EXERCISE 3.10|16 Videos
  • TRIGONOMETRY

    SURA PUBLICATION|Exercise EXERCISE 3.11|6 Videos
  • TRIGONOMETRY

    SURA PUBLICATION|Exercise EXERCISE 3.8|18 Videos
  • SURAS MODEL QUESTION PAPER -2

    SURA PUBLICATION|Exercise section -IV|7 Videos
  • TWO DIMENSIONAL ANALYTICAL GEOMETRY

    SURA PUBLICATION|Exercise ADDITIONAL PROBLEMS - SECTION - D|3 Videos

Similar Questions

Explore conceptually related problems

In a Delta ABC, prove that a sin ((A)/(2) + B) = (b + c) sin ""(A)/(2)

In a triangleABC, prove that a cos A+b cos B+c cos C=2a sin B sin C

In any triangle ABC, prove that a cos A+b cos B +c cos C =(8 triangle^(2))/(abc) .

Prove that cos (A + B) cos (A - B) = cos^(2) B - sin^(2) A

In a Delta ABC, prove that (a sin(B - C))/(b^(2) - c^(2)) = (b sin (C - A))/(c^(2) - a^(2)) = (c sin (A - B))/(a^(2) - b^(2))

In Delta ABC , prove that (a - b)^(2) cos^(2).(C)/(2) + (a + b)^(2) sin^(2).(C)/(2) = c^(2)

If Delta ABC is right triangle and if angleA = (pi)/(2) , then prove that cos B - cos C = -1 + 2 sqrt(2) cos"" (B)/(2) sin"" (C )/(2) .

If A + B + C = 180^(@) , prove that cos A + cos B - cos C = -1 + 4 cos (A)/(2) cos"" (B)/(2) sin"" (C )/(2)

In a Delta ABC, angleA = 60^(@), prove that b + c = 2a cos ((B - C)/(2)) .