Home
Class 11
MATHS
In a DeltaABC, prove that (a^(2) - c^(...

In a `Delta`ABC, prove that
`(a^(2) - c^(2))/(b^(2)) = (sin (A - C))/(sin(A + C))`

Text Solution

Verified by Experts

The correct Answer is:
`[becaue sin(180 - (A + C) = sin (A + C)]`
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRY

    SURA PUBLICATION|Exercise EXERCISE 3.10|16 Videos
  • TRIGONOMETRY

    SURA PUBLICATION|Exercise EXERCISE 3.11|6 Videos
  • TRIGONOMETRY

    SURA PUBLICATION|Exercise EXERCISE 3.8|18 Videos
  • SURAS MODEL QUESTION PAPER -2

    SURA PUBLICATION|Exercise section -IV|7 Videos
  • TWO DIMENSIONAL ANALYTICAL GEOMETRY

    SURA PUBLICATION|Exercise ADDITIONAL PROBLEMS - SECTION - D|3 Videos

Similar Questions

Explore conceptually related problems

In a Delta ABC, prove that (a sin(B - C))/(b^(2) - c^(2)) = (b sin (C - A))/(c^(2) - a^(2)) = (c sin (A - B))/(a^(2) - b^(2))

In a Delta ABC, prove that a sin ((A)/(2) + B) = (b + c) sin ""(A)/(2)

In Delta ABC , prove that (a - b)^(2) cos^(2).(C)/(2) + (a + b)^(2) sin^(2).(C)/(2) = c^(2)

In Delta ABC, prove that (a^(2) - b^(2) + c^(2)) tan B = (a^(2) + b^(2) - c^(2)) tan C.

In a triangle ABC, prove that b^(2) sin 2C+c^(2) sin 2B=2bc sin A .

In a triangle ABC, prove that (a^(2)+b^(2))/(a^(2)+c^(2))=(1+cos (A-B) cos C)/(1+cos (A-C) cos B)

In any triangle ABC prove that (a^(2)sin(B-C))/(sinA)+(b^(2)sin(C-A))/(sinB)+(c^(2)sin(A-B))/(sinC)=0

In a triangle ABC, prove that (b + c)/(a) le cosec.(A)/(2)