Home
Class 11
MATHS
In DeltaABC, prove that (a^(2) - b^(2) +...

In `Delta`ABC, prove that `(a^(2) - b^(2) + c^(2))` tan B = `(a^(2) + b^(2) - c^(2))` tan C.

Text Solution

Verified by Experts

The correct Answer is:
tan C cot B
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRY

    SURA PUBLICATION|Exercise EXERCISE 3.10|16 Videos
  • TRIGONOMETRY

    SURA PUBLICATION|Exercise EXERCISE 3.11|6 Videos
  • TRIGONOMETRY

    SURA PUBLICATION|Exercise EXERCISE 3.8|18 Videos
  • SURAS MODEL QUESTION PAPER -2

    SURA PUBLICATION|Exercise section -IV|7 Videos
  • TWO DIMENSIONAL ANALYTICAL GEOMETRY

    SURA PUBLICATION|Exercise ADDITIONAL PROBLEMS - SECTION - D|3 Videos

Similar Questions

Explore conceptually related problems

In a Delta ABC, prove that (a sin(B - C))/(b^(2) - c^(2)) = (b sin (C - A))/(c^(2) - a^(2)) = (c sin (A - B))/(a^(2) - b^(2))

In Delta ABC , prove that (a - b)^(2) cos^(2).(C)/(2) + (a + b)^(2) sin^(2).(C)/(2) = c^(2)

In a Delta ABC, prove that (a^(2) - c^(2))/(b^(2)) = (sin (A - C))/(sin(A + C))

In a Delta ABC, prove that (a + b)/(a - b) = tan ((A + B)/(2)) cot ((A - B)/(2))

In any Delta ABC, prove that the area Delta = (b^(2) + c^(2) - a^(2))/(4 cot A )

In a Delta ABC, prove that a sin ((A)/(2) + B) = (b + c) sin ""(A)/(2)

In a triangle ABC, prove that b^(2) sin 2C+c^(2) sin 2B=2bc sin A .

In a Delta ABC, prove that a ( cos B + cos C) = 2 (b + c) sin^(2)""(A)/(2)

If in Delta ABC, 8R^(2) = a^(2) + b^(2) + c^(2) , then the triangle ABC is