Home
Class 11
MATHS
Solve: tan 2x = - cot (x + (pi)/(3))....

Solve: tan 2x = - cot `(x + (pi)/(3))`.

Text Solution

Verified by Experts

The correct Answer is:
`x = n pi + (5pi)/(6), n in ZZ`
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • TRIGONOMETRY

    SURA PUBLICATION|Exercise SECTION- C (3 MARKS)|2 Videos
  • TRIGONOMETRY

    SURA PUBLICATION|Exercise SECTION - D|5 Videos
  • TRIGONOMETRY

    SURA PUBLICATION|Exercise ADDITIONAL PROBLEMS (SECTION -A ( 1 MARK))|14 Videos
  • SURAS MODEL QUESTION PAPER -2

    SURA PUBLICATION|Exercise section -IV|7 Videos
  • TWO DIMENSIONAL ANALYTICAL GEOMETRY

    SURA PUBLICATION|Exercise ADDITIONAL PROBLEMS - SECTION - D|3 Videos

Similar Questions

Explore conceptually related problems

Solve tan^(-1) x gt cot^(-1) x

Solve : 2+tan x. cot.(x)/(2)+cot x. tan.(x)/(2)=0 .

Prove that pi/2 le tan^(-1) x + 2 cot^(-1) x le (3pi)/2

Solve tan 5 theta= cot 2 theta .

tan3x =-cot[x+pi/6]

Solve tan 2x+tan^(-1)3x=(pi)/(4) , if 6x^(2) lt 1

Solve : tan ^(-1) 2x + tan ^(-1) 3x = pi/4

Solve tan^(-1) x + cot^(-1) (-|x|) = 2 tan^(-1) 6x

Solve tan x=[x], x in (0, 3pi//2) . Here [.] represents the greatest integer function.

Solve : cot^(-1)x-cot^(-1) (x+1)=(pi)/(12), x gt 0