Home
Class 11
MATHS
Prove that cos^(2)x + cos^(2)(x + (pi)/(...

Prove that `cos^(2)x + cos^(2)(x + (pi)/(3)) + cos^(2) (x - (pi)/(3)) = (3)/(2)`

Text Solution

Verified by Experts

The correct Answer is:
`(3)/(2)`
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRY

    SURA PUBLICATION|Exercise SECTION- C (3 MARKS)|2 Videos
  • SURAS MODEL QUESTION PAPER -2

    SURA PUBLICATION|Exercise section -IV|7 Videos
  • TWO DIMENSIONAL ANALYTICAL GEOMETRY

    SURA PUBLICATION|Exercise ADDITIONAL PROBLEMS - SECTION - D|3 Videos

Similar Questions

Explore conceptually related problems

Prove that sin^(6)x + cos^(6)x = 1 - 3 sin^(2) x cos^(2)x .

Prove that cos theta + cos ((2pi)/(3)- theta)+ cos ((2pi)/(3)+ theta)=0

Prove that cos^(2)""pi/8+cos^(2) ""(3pi)/(8)+cos^(2)""(5pi)/(8)+cos^(2)""(7pi)/(8)=2

Prove that cos ((pi)/(4) + x) + cos ((pi)/(4) -x) = sqrt2 cos x

Prove that cos theta +cos ((2pi)/(3)-theta)+cos ((2pi)/(3)+theta)=0

Prove that pi/2 le sin ^(-1) x +2 cos^(-1) x lt (3 pi)/(2)

cos 3 x cos 2 x

Find the set of value of x for which the equation cos^(-1) x + cos^(-1) ((x)/(2) + (1)/(2) sqrt(3 -3x^(2))) = (pi)/(3) holds goods

Prove that: int_0^(2pi)(xsin^(2n)x)/(sin^(2n)+cos^(2n)x)dx = pi^2