Home
Class 11
MATHS
If A = [(lambda,1),(-1,-lambda)], then f...

If A = `[(lambda,1),(-1,-lambda)]`, then for what value of `lambda,A^(2)=0`?

A

0

B

`+-1`

C

`-1`

D

1

Text Solution

AI Generated Solution

The correct Answer is:
To find the value of \( \lambda \) such that \( A^2 = 0 \) for the matrix \( A = \begin{pmatrix} \lambda & 1 \\ -1 & -\lambda \end{pmatrix} \), we will perform the following steps: ### Step 1: Calculate \( A^2 \) We need to compute \( A^2 \) by multiplying matrix \( A \) with itself: \[ A^2 = A \cdot A = \begin{pmatrix} \lambda & 1 \\ -1 & -\lambda \end{pmatrix} \cdot \begin{pmatrix} \lambda & 1 \\ -1 & -\lambda \end{pmatrix} \] ### Step 2: Perform the Matrix Multiplication Using the formula for matrix multiplication, we calculate each element of the resulting matrix: - The element at position (1,1): \[ \lambda \cdot \lambda + 1 \cdot (-1) = \lambda^2 - 1 \] - The element at position (1,2): \[ \lambda \cdot 1 + 1 \cdot (-\lambda) = \lambda - \lambda = 0 \] - The element at position (2,1): \[ -1 \cdot \lambda + (-\lambda) \cdot (-1) = -\lambda + \lambda = 0 \] - The element at position (2,2): \[ -1 \cdot 1 + (-\lambda) \cdot (-\lambda) = -1 + \lambda^2 \] Putting it all together, we have: \[ A^2 = \begin{pmatrix} \lambda^2 - 1 & 0 \\ 0 & \lambda^2 - 1 \end{pmatrix} \] ### Step 3: Set \( A^2 \) Equal to the Zero Matrix To find the value of \( \lambda \) such that \( A^2 = 0 \), we set the resulting matrix equal to the zero matrix: \[ \begin{pmatrix} \lambda^2 - 1 & 0 \\ 0 & \lambda^2 - 1 \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} \] This gives us the equation: \[ \lambda^2 - 1 = 0 \] ### Step 4: Solve for \( \lambda \) Now we solve the equation: \[ \lambda^2 = 1 \] Taking the square root of both sides, we find: \[ \lambda = \pm 1 \] ### Conclusion Thus, the values of \( \lambda \) for which \( A^2 = 0 \) are: \[ \lambda = 1 \quad \text{or} \quad \lambda = -1 \]
Promotional Banner

Topper's Solved these Questions

  • MATRICES AND DETERMINANTS

    SURA PUBLICATION|Exercise ADDITIONAL PROBLEMS SECTION -A (1 MARK )|7 Videos
  • MATRICES AND DETERMINANTS

    SURA PUBLICATION|Exercise ADDITIONAL PROBLEMS SECTION -B (2 MARK )|3 Videos
  • MATRICES AND DETERMINANTS

    SURA PUBLICATION|Exercise EXERCISE 7.4|9 Videos
  • INTRODUCTION OF PROBABILITY THEOREM

    SURA PUBLICATION|Exercise ADDITIONAL PROBLEMS SECTION - A|14 Videos
  • QUESTION PAPER -19

    SURA PUBLICATION|Exercise SECTION - IV|11 Videos

Similar Questions

Explore conceptually related problems

If A = [{:(lambda,1),(-1,-lambda):}] , then for what values of lambda, A^(2) =0 ? …………..

If z=(lambda+3)+isqrt(5-lambda^2) then the locus of Z is

If |(a^2+lambda^2, a b+clambda, ca-blambda), (a b-clambda, b^2+lambda^2, b c+a), (ca+blambda, bc-alambda, c^2+lambda^2)| |(lambda, c, -b), (-c,lambda, a), (b,-a,lambda)|=(1+a^2+b^2+c^2)^3 , then he value of lambda is a. 8 b. 27 c. 1 d. -1

If the rank of the matrix [(lambda,-1,0),(0, lambda,-1),(-1,0,lambda)] is 2, then find lambda .

Find the value of lambda so that the points P ,Q ,R and S on the sides O A ,O B ,OC and A B , respectively, of a regular tetrahedron O A B C are coplanar. It is given that (O P)/(O A)=1/3,(O Q)/(O B)=1/2,(O R)/(O C)=1/3 and (O S)/(A B)=lambdadot (A) lambda=1/2 (B) lambda=-1 (C) lambda=0 (D) for no value of lambda

If roots alpha, beta of the equation (x^(2)-bx)/(ax-c)=(lambda-1)/(lambda+1) are such that alpha+ beta=0 , then the value of lambda is

If 4x+8cos x+tanx-2 sec x-4 log {cos x(1+sinx)}ge 6 for all x in [0, lambda) then the largest value of lambda is

SURA PUBLICATION-MATRICES AND DETERMINANTS -EXERCISE 7.5
  1. Which one of the following is true about the matrix [(1,0,0),(0,0,0),(...

    Text Solution

    |

  2. Find which one is true. If A and B are two matrices such that A+B and ...

    Text Solution

    |

  3. If A = [(lambda,1),(-1,-lambda)], then for what value of lambda,A^(2)=...

    Text Solution

    |

  4. If A= [(1,-1),(2,-1)] and B = [(a,1),(b,-1)] and(A+B)^(2)=A^(2)+B^(2),...

    Text Solution

    |

  5. If A = [(1,2,2),(2,1,-2),(a,2,b)] is a matrix satisfying the equation ...

    Text Solution

    |

  6. If A is a square matrix, then which of the following is not symmetric ...

    Text Solution

    |

  7. If A and B are symmetric matrices of order n,where(A ne B),then:

    Text Solution

    |

  8. If A = [(a,x),(y,a)] and if xy = 1, then det ("AA"^(T)) is equal to

    Text Solution

    |

  9. The value of x, for which the matrix A = [(e^(x-2),e^(7+x)),(e^(2+x),e...

    Text Solution

    |

  10. If the points (x,-2), (5,2), (8,8) are collinear, then x is equal to

    Text Solution

    |

  11. If =|(2a,x(1),y(1)),(2b,x(2),y(2)),(2c,x(3),y(3))|=abc/2 ne 0then the ...

    Text Solution

    |

  12. If the square of the matrix [(alpha,beta),(gamma,-alpha)] is the unit ...

    Text Solution

    |

  13. If Delta=|(a,b,c),(x,y,z),(p,q,r)|,"then"|(ka,kb,kc),(kx,ky,kz),(kp,kq...

    Text Solution

    |

  14. A root of the equation |(3-x,-6,3),(-6,3-x,3),(3,3,-6-x)|=0 is

    Text Solution

    |

  15. The value of the determinant of A = [(0,a,-b),(-a,0,c),(b,-c,0)] is

    Text Solution

    |

  16. If x(1), x(2), x(3) and y(1),y(2), y(3) are in arithmetic progression ...

    Text Solution

    |

  17. If |.| denotes the greatest integer less than or equal to the real num...

    Text Solution

    |

  18. If a ne b, b,c satisfy |(a,2b,2c),(3,b,c),(4,a,b)|=0, then abc =

    Text Solution

    |

  19. If A = |(-1,2,4),(3,1,0),(-2,4,2)|and B= |(-2,4,2),(6,2,0),(-2,4,8)|,t...

    Text Solution

    |

  20. If A is a skew symmetric matrix of order n and C is a column matrix of...

    Text Solution

    |