Home
Class 11
MATHS
Using factor theorem, show that |(-2a,a+...

Using factor theorem, show that `|(-2a,a+b,c+a),(a+b,-2a,b+c),(c+a,c+b,-2c)|=4(a+b)(b+c)(c+a)`

Answer

Step by step text solution for Using factor theorem, show that |(-2a,a+b,c+a),(a+b,-2a,b+c),(c+a,c+b,-2c)|=4(a+b)(b+c)(c+a) by MATHS experts to help you in doubts & scoring excellent marks in Class 11 exams.

Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • MATRICES AND DETERMINANTS

    SURA PUBLICATION|Exercise ADDITIONAL PROBLEMS SECTION -C (4 MARK )|4 Videos
  • INTRODUCTION OF PROBABILITY THEOREM

    SURA PUBLICATION|Exercise ADDITIONAL PROBLEMS SECTION - A|14 Videos
  • QUESTION PAPER -19

    SURA PUBLICATION|Exercise SECTION - IV|11 Videos

Similar Questions

Explore conceptually related problems

Show that |(b+c,a,a^(2)),(c+a,b,b^(2)),(a+b,c,c^(2))|=(a+b+c)(a-b)(b-c)(c-a)

Solve the following problems by using Factor Theorem : |(b+c,a,a^2),(c+a,b,b^2),(a+b,c,c^2)|=(a+b+c)(a-b)(b-c)(c-a)

Show that |(b+c,a-c,a-b),(b-c,c+a,b-a),(c-b,c-a,a+b)|=8abc

Prove that |(1,a,a^(2)),(1,b,b^(2)),(1,c,c^(2))|=(a-b)(b-c)(c-a)

Prove that |{:(1,a,a^2),(1,b,b^2),(1,c,c^2):}|=(a-b)(b-c)(c-a) .

Prove that |a b+c a^2b c+a b^2c a+b c^2|=-(a+b+c)xx(a-b)(b-c)(c-a)dot

Prove that |a b+c a^2b c+a b^2c a+b c^2|=-(a+b+c)xx(a-b)(b-c)(c-a)dot

By using properties of determinants , show that : (i) {:[( 1,a,a^(2)),( 1,b,b^(2)),( 1,c,c^(2))]:}=(a-b)(b-c) (c-a) (ii) {:[( 1,1,1),( a,b,c) ,(a^(3) , b^(3), c^(3))]:} =( a-b) (b-c)( c-a) (a+b+c)

Show that: |b^2+c^2a b a c b a c^2+a^2b cc a c b a^2+b^2|=4a^2b^2c^2

Using properties of determinants Prove that |{:(a+b+c,,-c,,-b),(-c,,a+b+c,,-a),( -b,,-a,,a+b+c):}| = 2 (a+b) (b+c) (c+a)