Using factor theorem, show that `|(-2a,a+b,c+a),(a+b,-2a,b+c),(c+a,c+b,-2c)|=4(a+b)(b+c)(c+a)`
Topper's Solved these Questions
MATRICES AND DETERMINANTS
SURA PUBLICATION|Exercise ADDITIONAL PROBLEMS SECTION -C (4 MARK )|4 Videos
INTRODUCTION OF PROBABILITY THEOREM
SURA PUBLICATION|Exercise ADDITIONAL PROBLEMS SECTION - A|14 Videos
QUESTION PAPER -19
SURA PUBLICATION|Exercise SECTION - IV|11 Videos
Similar Questions
Explore conceptually related problems
Show that |(b+c,a,a^(2)),(c+a,b,b^(2)),(a+b,c,c^(2))|=(a+b+c)(a-b)(b-c)(c-a)
Show that |(b+c,a-c,a-b),(b-c,c+a,b-a),(c-b,c-a,a+b)|=8abc
Prove that |(1,a,a^(2)),(1,b,b^(2)),(1,c,c^(2))|=(a-b)(b-c)(c-a)
Prove that |{:(1,a,a^2),(1,b,b^2),(1,c,c^2):}|=(a-b)(b-c)(c-a) .
Prove that |a b+c a^2b c+a b^2c a+b c^2|=-(a+b+c)xx(a-b)(b-c)(c-a)dot
Prove that |a b+c a^2b c+a b^2c a+b c^2|=-(a+b+c)xx(a-b)(b-c)(c-a)dot
By using properties of determinants , show that : (i) {:[( 1,a,a^(2)),( 1,b,b^(2)),( 1,c,c^(2))]:}=(a-b)(b-c) (c-a) (ii) {:[( 1,1,1),( a,b,c) ,(a^(3) , b^(3), c^(3))]:} =( a-b) (b-c)( c-a) (a+b+c)
Show that: |b^2+c^2a b a c b a c^2+a^2b cc a c b a^2+b^2|=4a^2b^2c^2
Using properties of determinants Prove that |{:(a+b+c,,-c,,-b),(-c,,a+b+c,,-a),( -b,,-a,,a+b+c):}| = 2 (a+b) (b+c) (c+a)
SURA PUBLICATION-MATRICES AND DETERMINANTS -ADDITIONAL PROBLEMS SECTION -D (5 MARK )