Without expanding evaluate the determinant `|(sinalpha,cosalpha,sin(alpha+delta)),(sinbeta,cosbeta,sin(beta+delta)),(singamma,cosgamma,sin(gamma+delta))|`
Topper's Solved these Questions
MATRICES AND DETERMINANTS
SURA PUBLICATION|Exercise ADDITIONAL PROBLEMS SECTION -C (4 MARK )|4 Videos
INTRODUCTION OF PROBABILITY THEOREM
SURA PUBLICATION|Exercise ADDITIONAL PROBLEMS SECTION - A|14 Videos
QUESTION PAPER -19
SURA PUBLICATION|Exercise SECTION - IV|11 Videos
Similar Questions
Explore conceptually related problems
Prove that |(sin alpha,cos alpha,sin(alpha+delta)),(sin beta,cos beta,sin(beta+delta)),(sin gamma,cos gamma,sin(gamma+delta))|=0
"Evaluate "Delta ={:[( 0 , sin alpha ,-cos alpha ) ,( -sin alpha , 0 , sin beta ),( cos alpha , -sin beta , 0)]:}
Find |A| , if A =[{:( 0 , sin alpha , cos alpha),(sin alpha , 0 , sin beta),(cos alpha , -sin beta , 0):}]
If f(alpha,beta)=|(cos alpha,-sin alpha,1),(sin alpha,cos alpha,1),(cos(alpha+beta),-sin(alpha+beta),1)|, then
Evaluate {:[( cos alpha cos beta , cos alpha sin beta , -sin alpha ),( -sin beta , cos beta, 0),( sin alpha cos beta, sin alpha sin beta, cos alpha ) ]:} =0
" If " f(x) = |{:(cos(x+alpha),,cos(x+beta),,cos(x+gamma)),(sin(x+alpha) ,,sin(x+beta),,sin(x+gamma)),(sin(beta-gamma),, sin(gamma-alpha),,sin (alpha-beta)):}| and f(0)=2 theb find the value of Sigma_(r=1)^(30) | f(r )| .
If 0ltalphaltbetaltgammagtpi//2 ,then prove that tanalphalt(sinalpha+sinbeta+singamma)/(cosalpha+cosbeta+cosgamma)lttangamma .
alpha,beta,gammaa n ddelta are angle in I, II, III and iv quadrants, respectively and none of them is an integral multiple of pi/2dot They form an increasing arithmetic progression. Which of the following holds? cos(alpha+delta)>0 cos(alpha+delta)=0 cos(alpha+delta) 0orcos(alpha+delta)<0 Which of the following does not hold? sin(beta+gamma)=sin(alpha+delta) sin(beta-gamma)="sin"(alpha-delta) sin(alpha-beta)="tan"(beta-delta) sin(alpha+gamma)=cos2beta) If alpha+beta+gamma+delta=thetaa n dalpha=70^0, then 400^0
Let A and B denote the statements A : cos alpha + cos beta + cos gamma =0 B : sin alpha + siin beta + sin gamma = 0 If cos(beta - gamma) + cos (gamma -alpha) + cos (alpha -beta) = - (3)/(2) , then
By geometrical interpretation, prove that (i) sin(alpha+beta)=sin alpha cos beta+sinbeta cosalpha (ii) cos(alpha+beta)=cosalpha cosbeta -sin alpha sinbeta
SURA PUBLICATION-MATRICES AND DETERMINANTS -ADDITIONAL PROBLEMS SECTION -D (5 MARK )