Home
Class 11
MATHS
Let veca=2vecj+vecj-2veck,vecb=veci+vecj...

Let `veca=2vecj+vecj-2veck,vecb=veci+vecj.` If `vecc` is a vector such that `veca.vecc=|vecc|,|vecc-veca|=2sqrt(2)` and the angle between `vecaxxvecb` and `vecc` is `30^(@)`. Find the value of `|(vecaxxvecb)xxvecc|`

Answer

Step by step text solution for Let veca=2vecj+vecj-2veck,vecb=veci+vecj. If vecc is a vector such that veca.vecc=|vecc|,|vecc-veca|=2sqrt(2) and the angle between vecaxxvecb and vecc is 30^(@). Find the value of |(vecaxxvecb)xxvecc| by MATHS experts to help you in doubts & scoring excellent marks in Class 11 exams.

Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • VECTOR ALGEBRA -I

    SURA PUBLICATION|Exercise ADDITIONAL PROBLEMS SECTION - C (3 - MARK)|5 Videos
  • TWO DIMENSIONAL ANALYTICAL GEOMETRY

    SURA PUBLICATION|Exercise ADDITIONAL PROBLEMS - SECTION - D|3 Videos

Similar Questions

Explore conceptually related problems

If veca, vecb,vecc are unit vectors such that veca.vecb = 0= veca.vecc and the angle between vecb and vecc is pi//3 then the value of |vecaxxvecb -veca xx vecc| is

veca+vecb+vecc=vec0, |veca|=3, |vecb|=5,|vecc|=9 ,find the angle between veca and vecc .

Knowledge Check

  • The vectors veca-vecb,vecb-vecc,vecc-veca are

    A
    parallel to each other
    B
    unit vectors
    C
    mutually perpendicular vectors
    D
    coplanar vectors.
  • If veca,vecb, vecc are three non-coplanar vectors such that vecaxx(vecbxx vecc)=(vecb+vecc)/(sqrt(2)) then the angle between veca and vecb is ________.

    A
    ` (pi)/(6) `
    B
    ` (pi)/(4) `
    C
    ` (pi)/(2) `
    D
    ` (3pi)/(4) `
  • If veca=2veci+vecj-veck , vecb=veci+2vecj+veck and vecc=veci-vecj+2veck then veca.(vecbxxvecc) =

    A
    6
    B
    10
    C
    12
    D
    24
  • Similar Questions

    Explore conceptually related problems

    If veca,vecb,vecc are three vectors such that veca+2vecb+vecc=vec0 and |veca|=3,|vecb|=4,|vecc|=7 , find the angle between veca and vecb .

    If veca=5veci-2vecj+3veck , vecb=2veci+vecj-veck find veca X vecb .

    If veca,vecb,vecc be unit vectors such that veca.vecb=veca.vecc=0 and the angle between vecb and vecc is pi//6 . Prove that veca=pm2(vecbxxvecc)

    Let veca, vecb, vecc be three unit vectors and veca.vecb=veca.vecc=0 . If the angle between vecb and vecc is pi/3 then find the value of |[veca vecb vecc]|

    Let veca,vecb,vecc be unit vectors such that veca.vecb=veca.vecc=0 and the angle between vecb and vecc is (pi)/(3). Prove that veca=+-(2)/(sqrt(3))(vecbxxvecc).