Home
Class 11
MATHS
lim(xto0)(e^(ax)-e^(bx))/x...

`lim_(xto0)(e^(ax)-e^(bx))/x`

Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIAL CALCULUS - LIMITS AND CONTINUITY

    SURA PUBLICATION|Exercise EXERCISE 9.5|29 Videos
  • DIFFERENTIAL CALCULUS - LIMITS AND CONTINUITY

    SURA PUBLICATION|Exercise EXERCISE 9.6|22 Videos
  • DIFFERENTIAL CALCULUS - LIMITS AND CONTINUITY

    SURA PUBLICATION|Exercise EXERCISE 9.3|12 Videos
  • COMBINATORICS AND MATHEMATICAL INDUCTION

    SURA PUBLICATION|Exercise ADDITIONAL PROBLEMS (section - D)|5 Videos
  • DIFFERENTIAL CALCUS - DIFFERENTIABILITY AND METHODS OF DIFFERENTIATION

    SURA PUBLICATION|Exercise ADDITIONAL PROBLEMS SECTION-D (5 MARKS)|4 Videos

Similar Questions

Explore conceptually related problems

Evaluate the limits lim_(x to 0) (e^(ax)-e^(bx))/x

lim_(xto0)(e^(tanx)-e^(x))/(tanx-x)=

lim_(xto0)(e^(x)-e^(-x))/sinx

lim_(xto0)(2^(x)-3^(x))/x

Evaluate lim_(xto0) (e^(x)-e^(xcosx))/(x+sinx).

Evaluate lim_(xto0) (e^(x)-e^(-x)-2x)/(x-sinx).

Evaluate lim_(xto0) (e^(x)+e^(-x)-2)/(x^(2))

Solve the limit ; lim_(xto0)((a^(x)-b^(x)))/(x)=

If lim_(xrarr0) (e^(ax)-e^(x)-x)/(x^(2))=b (finite), then

lim_(xto0)(xe^(x)-sinx)/x is