Home
Class 11
MATHS
If lim(xto0)(sinpx)/(tan3x)=4, then the ...

If `lim_(xto0)(sinpx)/(tan3x)=4`, then the value of p is

A

6

B

9

C

12

D

4

Text Solution

Verified by Experts

Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIAL CALCULUS - LIMITS AND CONTINUITY

    SURA PUBLICATION|Exercise ADDITIONAL PROBLEMS (SECTION - A)|9 Videos
  • DIFFERENTIAL CALCULUS - LIMITS AND CONTINUITY

    SURA PUBLICATION|Exercise ADDITIONAL PROBLEMS (SECTION - B)|5 Videos
  • DIFFERENTIAL CALCULUS - LIMITS AND CONTINUITY

    SURA PUBLICATION|Exercise EXERCISE 9.5|29 Videos
  • COMBINATORICS AND MATHEMATICAL INDUCTION

    SURA PUBLICATION|Exercise ADDITIONAL PROBLEMS (section - D)|5 Videos
  • DIFFERENTIAL CALCUS - DIFFERENTIABILITY AND METHODS OF DIFFERENTIATION

    SURA PUBLICATION|Exercise ADDITIONAL PROBLEMS SECTION-D (5 MARKS)|4 Videos

Similar Questions

Explore conceptually related problems

If lim_(x to 0) (sinpx)/(tan3x)=4 then the value of p is……….

If lim_(x to 0) (sin px)/(tan 3x)=4 then the value of p is ……………………… .

If lim_(xto0)(sin3x)/(tankx)=5 then the value of k is

lim_(xto0)(tan2x)/x

lim_(xto0)(2"arc"sinx)/(3x)

lim_(xto0)(tan2x)/(sin5x)

lim_(xto0)(tanx-sinx)/x^(3)

If lim_(xto0) (ae^(x)-b)/(x) =2, then find the values of a and b.

lim_(xto0)(e^(sinx)-1)/x=

lim_(xto0)"sin"(1)/(x) is