Home
Class 11
MATHS
The value of lim(xto0)sinx/(sqrtx)^2 is...

The value of `lim_(xto0)sinx/(sqrtx)^2` is

A

-1

B

1

C

0

D

limit does not exist

Text Solution

Verified by Experts

Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIAL CALCULUS - LIMITS AND CONTINUITY

    SURA PUBLICATION|Exercise ADDITIONAL PROBLEMS (SECTION - A)|9 Videos
  • DIFFERENTIAL CALCULUS - LIMITS AND CONTINUITY

    SURA PUBLICATION|Exercise ADDITIONAL PROBLEMS (SECTION - B)|5 Videos
  • DIFFERENTIAL CALCULUS - LIMITS AND CONTINUITY

    SURA PUBLICATION|Exercise EXERCISE 9.5|29 Videos
  • COMBINATORICS AND MATHEMATICAL INDUCTION

    SURA PUBLICATION|Exercise ADDITIONAL PROBLEMS (section - D)|5 Videos
  • DIFFERENTIAL CALCUS - DIFFERENTIABILITY AND METHODS OF DIFFERENTIATION

    SURA PUBLICATION|Exercise ADDITIONAL PROBLEMS SECTION-D (5 MARKS)|4 Videos

Similar Questions

Explore conceptually related problems

Evaluate lim_(xto0)(sinax)/(bx)

The value of lim_(xto 0)(log(1+2x))/(x) is equal to

lim_(xto0)(sin2x)/(1-sqrt(1-x))

lim_(xto0)xsin(1/x) is

Find the value of lim_(xto0) (sinx+log_(e)(sqrt(1+sin^(2)x)-sinx))/(sin^(3)x).

If f(x)=x(-1)^[1/x] xle0 , then the value of lim_(xto0)f(x) is equal to

Find the value of lim_(xto0^(+)) (sinx)^((1)/(x)) .

The value of lim_(xto0) (1-(cosx)sqrt(cos2x))/(x^(2)) is

The value of lim_(xto0) (2^(3x)-3^(2x))/x is

if lim_(xto0)(sinax)/(xcosbx)=