Home
Class 11
MATHS
(1)/(sin^(2)x)...

`(1)/(sin^(2)x)`

Text Solution

Verified by Experts

The correct Answer is:
`int(1)/(sin^(2)x)dx=intcosec^(2)xdx=-cot x +c`
Promotional Banner

Topper's Solved these Questions

  • INTEGRAL CALCULUS

    SURA PUBLICATION|Exercise Exercise 11.2|15 Videos
  • INTEGRAL CALCULUS

    SURA PUBLICATION|Exercise Exercise 11.3|6 Videos
  • GOVT. MODEL QUESTION PAPER - 2 (2018 - 19)

    SURA PUBLICATION|Exercise SECTION - IV|13 Videos
  • INTRODUCTION OF PROBABILITY THEOREM

    SURA PUBLICATION|Exercise ADDITIONAL PROBLEMS SECTION - A|14 Videos

Similar Questions

Explore conceptually related problems

sin^(-1)(2cos^(2)x-1)+cos^(-1)(1-2sin^(2)x)=

int(e^(x)(1+x))/(sin^(2)(xe^(x)))dx

Find the range of the function f(x) =x Sin x-(1)/(2) sin^(2) x for x in (0,(pi)/(2))

lim_(xto(pi)/(6))(2sin^(2)x+sinx-1)/(2sin^(2)x-3sinx+1)=

Find the equation of the normal to the curve y=(1+x)^y+sin^(-1)(sin^2x) at x=0.

The value of int_(0)^(1) (sin^(-1) x ) ^(2) dx is

Integrate the following with respect to 'x' : (i) 1/(sin^2x) (ii) (tanx)/(cosx) (iii) (cosx)/(sin^2x) (iv) 1/(cos^2x)

Evaluate: lim_(x->0)(1/(x^2)-1/(sin^2x))