`e^(8-7x)`

Text Solution

Verified by Experts

The correct Answer is:
`int e^(8-7x)dx = (e^(8-7x))/((-7))+c = - (1)/(7) e^(8-7x) + c `
Promotional Banner

Topper's Solved these Questions

  • INTEGRAL CALCULUS

    SURA PUBLICATION|Exercise Exercise 11.3|6 Videos
  • INTEGRAL CALCULUS

    SURA PUBLICATION|Exercise Exercise 11.4|8 Videos
  • INTEGRAL CALCULUS

    SURA PUBLICATION|Exercise Section - D (5 marks)|3 Videos
  • GOVT. MODEL QUESTION PAPER - 2 (2018 - 19)

    SURA PUBLICATION|Exercise SECTION - IV|13 Videos
  • INTRODUCTION OF PROBABILITY THEOREM

    SURA PUBLICATION|Exercise ADDITIONAL PROBLEMS SECTION - A|14 Videos

Similar Questions

Explore conceptually related problems

If y=500e^(7x)+600e^(-7x) show that (d^(2)y)/(dx^(2))=49y .

If y= 500e^(7x) +600e^(-7x) , show that (d^(2)y)/(dx^(2))= 49y .

int e^(-7x) sin 5 x dx is

int e^(-7x) sin 5x dx is ………..

Integrate the following w.r.t. x. e^(9-8x)

Let f(x)=int(dx)/(e^(x)+8e^(-x)+4e^(-3x)),g(x)=int(dx)/(e^(3x)+8e^(x)+4e^(-x)). int(f(x)-2g(x))dx

Let f(x)=int(dx)/(e^(x)+8e^(-x)+4e^(-3x)),g(x)=int(dx)/(e^(3x)+8e^(x)+4e^(-x)). int(f(x)-2g(x))dx

The value of x, for which the matrix A = [(e^(x-2),e^(7+x)),(e^(2+x),e^(2x+3))] is singular is

Find the value of x for which A= [(e^(2x+1),e^(x-2)),(e^(2-x),e^(x-7))] is singular: