Home
Class 11
MATHS
(6)/(1 + (3 x + 2)^(2))-(12)/(sqrt(1-(3-...

`(6)/(1 + (3 x + 2)^(2))-(12)/(sqrt(1-(3-4x)^(2)))`

Text Solution

Verified by Experts

The correct Answer is:
` = 2 tan^(-1) (3x + 2) + sin^(-1) (3- 4 x) + c `
Promotional Banner

Topper's Solved these Questions

  • INTEGRAL CALCULUS

    SURA PUBLICATION|Exercise Exercise 11.4|8 Videos
  • INTEGRAL CALCULUS

    SURA PUBLICATION|Exercise Exercise 11.5|20 Videos
  • INTEGRAL CALCULUS

    SURA PUBLICATION|Exercise Exercise 11.2|15 Videos
  • GOVT. MODEL QUESTION PAPER - 2 (2018 - 19)

    SURA PUBLICATION|Exercise SECTION - IV|13 Videos
  • INTRODUCTION OF PROBABILITY THEOREM

    SURA PUBLICATION|Exercise ADDITIONAL PROBLEMS SECTION - A|14 Videos

Similar Questions

Explore conceptually related problems

Integrate the following w.r.to .x. 6/(1+(3x+2)^2)-12/(sqrt(1-(3-4x)^2))

Integrate the following with respect to x. (1)/((2x+1)^(3))+(3)/(5-2x)+(1)/(sqrt(1-4x^(2)))

(2x + 3)/(sqrt(x^(2)+ 4 x + 1 ))

Prove that 3 tan^(-1) x= {(tan^(-1) ((3x - x^(3))/(1 - 3x^(2))),"if " -(1)/(sqrt3) lt x lt (1)/(sqrt3)),(pi + tan^(-1) ((3x - x^(3))/(1 - 3x^(2))),"if " x gt (1)/(sqrt3)),(-pi + tan^(-1) ((3x - x^(3))/(1 - 3x^(2))),"if " x lt - (1)/(sqrt3)):}

Expand (2x^(2)-3sqrt(1-x^(2)))^(4)+(2x^(2)+3sqrt(1-x^(2)))^(4)

The number of real solution of the equation tan^(-1) sqrt(x^(2) - 3x + 2) + cos^(-1) sqrt(4x - x^(2) -3) = pi is