Home
Class 11
MATHS
e ^(x log a)e^(x)...

` e ^(x log a)e^(x)`

Text Solution

Verified by Experts

The correct Answer is:
`= ((ae)^(2))/(log (ae)) + c " " [ :' int a^(x) dx = ( a^(x))/( log a ) + c ] `
Promotional Banner

Topper's Solved these Questions

  • INTEGRAL CALCULUS

    SURA PUBLICATION|Exercise Exercise 11.6|16 Videos
  • INTEGRAL CALCULUS

    SURA PUBLICATION|Exercise Exercise 11.7|12 Videos
  • INTEGRAL CALCULUS

    SURA PUBLICATION|Exercise Exercise 11.4|8 Videos
  • GOVT. MODEL QUESTION PAPER - 2 (2018 - 19)

    SURA PUBLICATION|Exercise SECTION - IV|13 Videos
  • INTRODUCTION OF PROBABILITY THEOREM

    SURA PUBLICATION|Exercise ADDITIONAL PROBLEMS SECTION - A|14 Videos

Similar Questions

Explore conceptually related problems

int(e^(6 log x) - e^(5 log x))/(e^(4 log x) - e^(3 log x)) dx ……………. .

int (e^(6 log x) - e ^(5 log x))/( e^(4 log x) - e^(3 log x)) dx

If I=int e^(-x) log(e^x+1) dx, then equal

If g(x)=|a^(-x)e^(x log_e a)x^2a^(-3x)e^(3x log_e a)x^4a^(-5x)e^(5x log_e a)1| , then graphs of g(x) is symmetrical about the origin graph of g(x) is symmetrical about the y-axis ((d^4g(x))/(dx^4)|)_(x=0)=0 f(x)=g(x)xxlog((a-x)/(a+x)) is an odd function

" If " g(x) = |{:(a^(-x),,e^(x log _(e)a),,x^(2)),(a^(-3x),,e^(3x log_(e)a),,x^(4)),(a^(-5x),,e^(5x log _(e)a),,1):}| then

If int(e^(4x)-1)/(e^(2x))log((e^(2x)+1)/(e^(2x-1)))dx=(t^(2))/(2)logt-(t^(2))/(4)-(u^(2))/(2)logu+(u^(2))/(4)+C then

Find the term independent of x in the expansion of (2^(x) + 2^(-x)+log_(e)e^(x+2)))^(30) .