Home
Class 11
MATHS
(cosec x)/(log ("tan"(x)/(2)))...

`(cosec x)/(log ("tan"(x)/(2)))`

Text Solution

Verified by Experts

The correct Answer is:
` :. I = int (du)/(u) = log |u| + c = log |log ("tan"(x)/(2))| + c `
Promotional Banner

Topper's Solved these Questions

  • INTEGRAL CALCULUS

    SURA PUBLICATION|Exercise Exercise 11.7|12 Videos
  • INTEGRAL CALCULUS

    SURA PUBLICATION|Exercise Exercise 11.8|6 Videos
  • INTEGRAL CALCULUS

    SURA PUBLICATION|Exercise Exercise 11.5|20 Videos
  • GOVT. MODEL QUESTION PAPER - 2 (2018 - 19)

    SURA PUBLICATION|Exercise SECTION - IV|13 Videos
  • INTRODUCTION OF PROBABILITY THEOREM

    SURA PUBLICATION|Exercise ADDITIONAL PROBLEMS SECTION - A|14 Videos

Similar Questions

Explore conceptually related problems

cosec x =-2

(log x)/( (1 + log x)^(2))

Evaluate lim_(x to 0) (log_(tan^(2)x)(tan^(2)2x).

If ( sin x ) /( cos x) xx ( sec x )/( cosec x ) xx ( tan x )/( cot x) = 9 , where x in ( 0, (pi)/(2)) then the value of x is equal to

If int (cosec^(2)x)/((cosec x + cot x)^(9/2)) dx = (cosec x - cot x)^(7/2)(1/alpha+((cosec x-cotx)^(2))/11)+C where C is constant of integration and alpha in N) then alpha is

Find the following integrals int("cosec x")/("cosec "x-sinx)dx

If |cosec x|=(5pi)/(4)+(x)/(2)AA x in(-2pi,2pi) , then the number of solutions are

Show that "cosec"^(-1) (x/(sqrt(x^(2)-1))) = sec^(-1) (x) , | x | gt 1

f(x)=("ln"(x^(2)+e^(x)))/("ln"(x^(4)+e^(2x))) . Then lim_(x to oo) f(x) is equal to