Home
Class 11
MATHS
alpha beta x ^(alpha-1) e^(-beta x ^(alp...

`alpha beta x ^(alpha-1) e^(-beta x ^(alpha))`

Text Solution

Verified by Experts

The correct Answer is:
` = - e ^(-u) + c = - e ^(-beta x ^(alpha)) + c " " [ :' u = beta x ^(alpha) ] `
Promotional Banner

Topper's Solved these Questions

  • INTEGRAL CALCULUS

    SURA PUBLICATION|Exercise Exercise 11.7|12 Videos
  • INTEGRAL CALCULUS

    SURA PUBLICATION|Exercise Exercise 11.8|6 Videos
  • INTEGRAL CALCULUS

    SURA PUBLICATION|Exercise Exercise 11.5|20 Videos
  • GOVT. MODEL QUESTION PAPER - 2 (2018 - 19)

    SURA PUBLICATION|Exercise SECTION - IV|13 Videos
  • INTRODUCTION OF PROBABILITY THEOREM

    SURA PUBLICATION|Exercise ADDITIONAL PROBLEMS SECTION - A|14 Videos

Similar Questions

Explore conceptually related problems

If alpha,beta re the roots of a x^2+c=b x , then the equation (a+c y)^2=b^2y in y has the roots a. alphabeta^(-1),alpha^(-1)beta b. alpha^(-2),beta^(-2) c. alpha^(-1),beta^(-1) d. alpha^2,beta^2

Write each of the following expressions in terms of alpha+beta and alphabeta . (1)/(alpha^(2)beta)+(1)/(beta^(2)alpha)

If roots of the equation a x^2+b x+c=0 are alphaa n dbeta , find the equation whose roots are 1/alpha,1/beta (ii) -alpha,-beta (iii) (1-alpha)/(1+alpha),(1-beta)/(1+beta)

Given alpha,beta, respectively, the fifth and the fourth non-real roots of units, then find the value of (1+alpha)(1+beta)(1+alpha^2)(1+beta^2)(1+alpha^4)(1+beta^4)

Prove that 2 sin^2 beta + 4 cos(alpha + beta) sin alpha sin beta + cos 2(alpha + beta) = cos 2alpha

If alpha and beta be the roots of equation x^(2) + 3x + 1 = 0 then the value of ((alpha)/(1 + beta))^(2) + ((beta)/(1 + alpha))^(2) is equal to

If alpha, beta are the roots of x^(2) - px + q = 0 and alpha', beta' are the roots of x^(2) - p' x + q' = 0 , then the value of (alpha - alpha')^(2) + (beta + alpha')^(2) + (alpha - beta')^(2) + (beta - beta')^(2) is

In a quadratic equation with roots alpha and beta where alpha+beta=-4 and alpha beta=-1 , then required equation is ……………

consider f(X)= cos2x+2xlambda^(2)+(2lambda+1)(lambda-1)x^(2),lambda in R If alpha ne beta and f(alpha+beta)/(2)lt(f(alpha)+f(beta))/(2) for alpha and beta then find the values of lambda

Using properties of determinants in Exercises prove that : {:[( alpha , alpha ^(2) , beta +gamma ),( beta , beta ^(2) , gamma +alpha ),( gamma , gamma ^(2) ,alpha +beta ) ]:} =(beta -gamma ) (gamma -alpha ) (alpha -beta ) (alpha +beta +gamma )