Home
Class 11
MATHS
e ^(tan^(-1)x)((1 + x+ x^(2))/(1 + x^(2)...

`e ^(tan^(-1)x)((1 + x+ x^(2))/(1 + x^(2)))`

Text Solution

Verified by Experts

The correct Answer is:
` I = x*e^(tan^(-1)x) + c `
Promotional Banner

Topper's Solved these Questions

  • INTEGRAL CALCULUS

    SURA PUBLICATION|Exercise Exercise 11.10|9 Videos
  • INTEGRAL CALCULUS

    SURA PUBLICATION|Exercise Exercise 11. 11|6 Videos
  • INTEGRAL CALCULUS

    SURA PUBLICATION|Exercise Exercise 11.8|6 Videos
  • GOVT. MODEL QUESTION PAPER - 2 (2018 - 19)

    SURA PUBLICATION|Exercise SECTION - IV|13 Videos
  • INTRODUCTION OF PROBABILITY THEOREM

    SURA PUBLICATION|Exercise ADDITIONAL PROBLEMS SECTION - A|14 Videos

Similar Questions

Explore conceptually related problems

Prove that 3 tan^(-1) x= {(tan^(-1) ((3x - x^(3))/(1 - 3x^(2))),"if " -(1)/(sqrt3) lt x lt (1)/(sqrt3)),(pi + tan^(-1) ((3x - x^(3))/(1 - 3x^(2))),"if " x gt (1)/(sqrt3)),(-pi + tan^(-1) ((3x - x^(3))/(1 - 3x^(2))),"if " x lt - (1)/(sqrt3)):}

Differentiate tan^(-1)(2x/(1 - x^(2))) with respect to cos^(-1)((1 - x^(2))/(1 + x^(2)))

int(e^(tan^(-1)x))/(1+x^(2))dx

int(e^(tan^(-1)x))/(1+x^(2))dx :

Prove that tan^(-1)x+tan^(-1)""(2x)/(1-x^(2))=tan^(-1)((3x-x^(3))/(1-3x^(2)))absxlt(1)/(sqrt(3)).

If x in (0, 1) , then find the value of tan^(-1) ((1 -x^(2))/(2x)) + cos^(-1) ((1 -x^(2))/(1 + x^(2)))

The value of int_(-4)^(4) [ tan^(-1)((x^(2))/( x^(4)+1)) +tan^(-1) ((x^(4)+1)/( x^(2))) ] dx is

int (e^(x) (x^(2) tan^(-1) x + tan^(-1) x + 1))/( x^(2) + 1) dx is