Home
Class 11
MATHS
int (dx)/(e^(x) - 1 ) dx is...

`int (dx)/(e^(x) - 1 ) dx ` is

A

` log |e^(x)| - log |e^(x) - 1| + c `

B

` log |e^(x)| + log |e^(x) - 1| + c `

C

` log |e^(x) - 1| - log |e^(x)| + c `

D

` log | e^(x) + 1| - log |e^(x) | + c `

Text Solution

Verified by Experts

The correct Answer is:
c
Promotional Banner

Topper's Solved these Questions

  • INTEGRAL CALCULUS

    SURA PUBLICATION|Exercise Additional problems (section - A (1mark))|7 Videos
  • INTEGRAL CALCULUS

    SURA PUBLICATION|Exercise Section - B (2 marks)|4 Videos
  • INTEGRAL CALCULUS

    SURA PUBLICATION|Exercise Exercise 11.12|6 Videos
  • GOVT. MODEL QUESTION PAPER - 2 (2018 - 19)

    SURA PUBLICATION|Exercise SECTION - IV|13 Videos
  • INTRODUCTION OF PROBABILITY THEOREM

    SURA PUBLICATION|Exercise ADDITIONAL PROBLEMS SECTION - A|14 Videos

Similar Questions

Explore conceptually related problems

Integrate the following with respect to x. (i) int(2x + 4)/(x^2 + 4x + 6) dx " " (ii) int (e^x)/(e^x - 1) dx " " (iii) int 1/(x log x) dx (iv) int(sin x + cos x)/(sin x - cos x) dx " " (v) int (cos 2x)/((sin x + cos x)^2) dx .

int(dx)/(e^x - 1) is ……………….

int(dx)/(sqrt(2e^(x)-1))=

int(dx)/(x(x+1)) is

int(e^(x)+1)/(e^(x))dx :

int(e^x)/(e^(2x)+4)dx

Column I, a) int(e^(2x)-1)/(e^(2x)+1)dx is equal to b) int1/((e^x+e^(-x))^2)dx is equal to c) int(e^(-x))/(1+e^x)dx is equal to d) int1/(sqrt(1-e^(2x)))dx is equal to COLUMN II p) x-log[1+sqrt(1-e^(2x)]+c q) log(e^x+1)-x-e^(-x)+c r) log(e^(2x)+1)-x+c s) -1/(2(e^(2x)+1))+c

int(x)/(e^(x^(2)))dx

int 1/(e^(x)) dx = ………