Home
Class 11
MATHS
Match List - I with List II . {:(...

Match List - I with List II .
`{:(,"List I ",,"List II"),(i.,int_(0)^((x)/(2))log(tan x)dx,(a),(16)/(35)),(ii.,int_(0)^(1)x(1-x)^(10)dx,(b),(120)/(4096)),(iii.,int_(0)^((pi)/(2))sin^(7)xdx,(c ),(1)/(132)),(iv.,int_(0)^(infty)x^(5)e^(-4x)dx,(d),0):}`

A

`{:("(i)","(ii)","(iii)","(iv)"),(d,c,a,b):}`

B

`{:("(i)","(ii)","(iii)","(iv)"),(d,c,b,a):}`

C

`{:("(i)","(ii)","(iii)","(iv)"),(d,d,a,b):}`

D

`{:("(i)","(ii)","(iii)","(iv)"),(b,c,a,d):}`

Text Solution

Verified by Experts

The correct Answer is:
A, B, C, D
Promotional Banner

Topper's Solved these Questions

  • INTEGRAL CALCULUS

    SURA PUBLICATION|Exercise Section - B (2 marks)|4 Videos
  • INTEGRAL CALCULUS

    SURA PUBLICATION|Exercise Section - C (3 marks)|4 Videos
  • INTEGRAL CALCULUS

    SURA PUBLICATION|Exercise Exercise 11.13|25 Videos
  • GOVT. MODEL QUESTION PAPER - 2 (2018 - 19)

    SURA PUBLICATION|Exercise SECTION - IV|13 Videos
  • INTRODUCTION OF PROBABILITY THEOREM

    SURA PUBLICATION|Exercise ADDITIONAL PROBLEMS SECTION - A|14 Videos

Similar Questions

Explore conceptually related problems

int_(0)^(1)x(1-x)^4 dx is :

int_(0)^(1)e^(2x)e^(e^(x) dx =)

Evaluate int_(0)^(1) x e^(-2x) dx

Prove that int_(0)^((pi)/(2)) log ( tan x ) dx = 0

Evaluate int_(0)^(1)e^(2-3x)dx

int_(0)^(pi/2) (sin x dx)/(1+ cos^2 x ) is

Evaluate: int_(0)^(1)x^(3)(1-x)^(4) dx.

Evaluate int_(0)^(1)(e^(-x)dx)/(1+e^(x))

Let I_(1)=int_(0)^(oo)(x^(2)sqrtx)/((1+x)^(6))dx,I_(2)=int_(0)^(oo)(xsqrtx)/((1+x)^(6))dx , then

Evaluate int_(0)^(1)(x^2/(1+x^2))dx