Home
Class 11
MATHS
A vector perpendicular to both hat(i) + ...

A vector perpendicular to both `hat(i) + hat(j) + hat(k)` and `2hat(i) + hat(j) + 3hat(k)` is,

A

`2hat(i) + hat(j) - hat(k)`

B

`2hat(i) - hat(j) - hat(k)`

C

`3hat(i) + hat(j) + 2hat(k)`

D

`3hat(i) + hat(j) - 2hat(k)`

Text Solution

Verified by Experts

The correct Answer is:
A, B
Promotional Banner

Topper's Solved these Questions

  • GOVT. MODEL QUESTION PAPER - 2 (2018 - 19)

    SURA PUBLICATION|Exercise SECTION - II|10 Videos
  • GOVT. MODEL QUESTION PAPER - 2 (2018 - 19)

    SURA PUBLICATION|Exercise SECTION - III|10 Videos
  • GOV. MODEL QUESTION PAPER - 1

    SURA PUBLICATION|Exercise Section - IV|11 Videos
  • INTEGRAL CALCULUS

    SURA PUBLICATION|Exercise Section - D (5 marks)|3 Videos

Similar Questions

Explore conceptually related problems

Find a vector whose length is 7 and that is perpendicular to each of the vectors vec(A) = 2 hat(i) - 3 hat(j) + 6 hat(k) and vec(B) = hat(i) + hat(j) - hat(k)

The angle between two vectors 2 hat(i) + 3 hat(j) + hat(k) and - 3 hat(i) + 6 hat(k) is :

The number of vectors of unit length perpedicular to the vectors (hat(i)+hat(j))and(hat(j)+hat(k)) is

A unit vector perpendicular to the vectors veca = 2 hat i - 6 hat j - 3 hat k and vec b = 4 hat i + 3 hat j - hat k is

show that the vectors 3 hat(i)- 2hat(j)+ hat(k), hat(i)-3hat(j)+5hat(k) and 2hat(i)+ hat(j)- 4 hat(k) form a right angled triangle

Show that the points whose position vectors are 2hat(i) + 3hat(j) - 5hat(k), 3hat(i) + hat(j) - 2hat(k) and 6hat(i) - 5hat(j) + 7hat(k) are collinear.

The number of vectors of unit length perpendicular to the vectors vec a = 2 hat i + hat j + 2 hat k and vec b = hat j + hat k is

Vectors perpendicular to hat i- hat j- hat k and in the plane of hat i+ hat j+ hat ka n d- hat i+ hat j+ vec k are hat i+ hat k b. 2 hat i+ hat j+ hat k c. 3 hat i+2 hat j+ hat k d. -4 hat i-2 hat j-2 hat k

Find a unit vector perpendicular to each of the vector vec a = hat i - 2 hat j + 3 hat k and vec b = hat i + 2hat j - hat k .