Home
Class 11
MATHS
If ("log"x)/(y - z) = ("log" y)/(z - x) ...

If `("log"x)/(y - z) = ("log" y)/(z - x) = ("log" z)/(x - y)` , then prove that xyz = 1.

Text Solution

Verified by Experts

The correct Answer is:
`xyz = 1`
Promotional Banner

Topper's Solved these Questions

  • GOVT. MODEL QUESTION PAPER - 2 (2018 - 19)

    SURA PUBLICATION|Exercise SECTION - III|10 Videos
  • GOVT. MODEL QUESTION PAPER - 2 (2018 - 19)

    SURA PUBLICATION|Exercise SECTION - IV|13 Videos
  • GOVT. MODEL QUESTION PAPER - 2 (2018 - 19)

    SURA PUBLICATION|Exercise SECTION - IV|13 Videos
  • GOV. MODEL QUESTION PAPER - 1

    SURA PUBLICATION|Exercise Section - IV|11 Videos
  • INTEGRAL CALCULUS

    SURA PUBLICATION|Exercise Section - D (5 marks)|3 Videos

Similar Questions

Explore conceptually related problems

If ("log"_(e)x)/(b - c) = ("log"_(e) y)/(c - a) = ("log"_(e) z)/(a - b) , show that xyz = 1

If ("log"_(e)x)/(b - c) = ("log"_(e) y)/(c - a) = ("log"_(e) z)/(a - b) , show that x^(a)y^(b)z^(c ) = 1

If y= 2^((1)/(log_(x)4)) then prove that x=y^(2) .

x log x(dy)/(dx) + y = (2)/(x)log x

If x=(log)_(2a)a , y=(log)_(3a)2a ,z=(log)_(4a)3a ,prove that 1+x y z=2y z

If (log_2x)/4=(log_2y)/6=(log_2z)/(3k) and x^3 y^2 z=1 , then k is equal to

If y=a^(1/(1-(log)_a x)) and z=a^(1/(1-(log)_a y)) ,then prove that x=a^(1/(1-(log)_a z))

If log ((x+y)/3)=1/2 (log x +log y) then find the value of x/y+y/x

For relation 2 log y - log x - log ( y-1) =0