Home
Class 11
MATHS
Show that |(log x, log y, logz),(log 2x,...

Show that `|(log x, log y, logz),(log 2x, log2y, log2z),(log3x, log3y,log3z)|=0`

Promotional Banner

Topper's Solved these Questions

  • GOVT. MODEL QUESTION PAPER - 2 (2018 - 19)

    SURA PUBLICATION|Exercise SECTION - III|10 Videos
  • GOV. MODEL QUESTION PAPER - 1

    SURA PUBLICATION|Exercise Section - IV|11 Videos
  • INTEGRAL CALCULUS

    SURA PUBLICATION|Exercise Section - D (5 marks)|3 Videos

Similar Questions

Explore conceptually related problems

(1)/(x log x log (log x ))

for x,x,z gt 0 Prove that |{:(1,,log_(x)y,,log_(x)z),(log_(y)x,,1,,log_(y)z),(log_(z) x,,log_(z)y,,1):}| =0

Find the value of |(1,log_(x) y,log_(x) z),(log_(y) x,1,log_(y) z),(log_(z) x,log_(z) y,1)| if x,y,z ne 1

(log x)/( (1 + log x)^(2))

The value of the determinant |[log_a(x/y), log_a(y/z), log_a(z/x)], [log_b (y/z), log_b (z/x), log_b (x/y)], [log_c (z/x), log_c (x/y), log_c (y/z)]|

For relation 2 log y - log x - log ( y-1) =0

Find the value of the product: |(log_(3)64,log_(4)3),(log_(3)8,log_(4)9)|xx|(log_(2)3,log_(8)3),(log_(3)4,log_(3)4)|

Solve for x: log_(4) log_(3) log_(2) x = 0 .

The value of |[log _(3) 512 , log _(4) 3 ],[ log _(3) 8 , log _(4) 9]||[log _(2) 3 , log _(8) 3],[ log _(3) 4 , log _(3) 4]| is