Home
Class 11
MATHS
If siny=xsin(a+y), then prove that (dy)/...

If `siny=xsin(a+y)`, then prove that `(dy)/(dx)=(sin^(2)(a+y))/sina, a ne npi`.

Text Solution

Verified by Experts

The correct Answer is:
`(sin^(2)(a + y))/(sin a) = (dy)/(dx)`
Promotional Banner

Topper's Solved these Questions

  • GOVT. MODEL QUESTION PAPER - 2 (2018 - 19)

    SURA PUBLICATION|Exercise SECTION - III|10 Videos
  • GOV. MODEL QUESTION PAPER - 1

    SURA PUBLICATION|Exercise Section - IV|11 Videos
  • INTEGRAL CALCULUS

    SURA PUBLICATION|Exercise Section - D (5 marks)|3 Videos

Similar Questions

Explore conceptually related problems

(dy)/(dx)=sin (x+y)

If cos y = x cos (a+y) Then prove that (dy)/(dx) = (cos^(2) (a+y))/(sin a ) , cosa ne +-1

If y=(sin(x+a))/(cosx) , then prove that (dy)/(dx)=(cosa)/(cos^(2)x) .

If cos y= x cos (a+y) , with cos a ne pm 1 , prove that (dy)/(dx)=(cos^(2)(a+y))/(sin a) .

If y= A sin x+ B cos x , then prove that (d^(2)y)/(dx^(2))+y=0 .

If x^y=e^(x-y), Prove that (dy)/(dx)=(logx)/((1+logx)^2)

Solve (dy)/(dx)=(siny + x)/(sin2y-xcosy)

Solve (dy)/(dx)=cos(x+y)-sin(x+y) .

If y= 5 cos x-3 sin x , prove that (d^(2)y)/(dx^(2))+y=0 .

Find (dy)/(dx) if y =e^(x) sin 2x