Home
Class 11
MATHS
Using the substitution 2x + 1 = t^(2), s...

Using the substitution `2x + 1 = t^(2)`, show that
`int(6x)/(sqrt(2x + 1)) dx = 2(x - 1)sqrt(2x + 1 + c)`.

Text Solution

Verified by Experts

The correct Answer is:
`2(x - 1)sqrt(2x + 1) + c`
Promotional Banner

Topper's Solved these Questions

  • GOVT. MODEL QUESTION PAPER - 2 (2018 - 19)

    SURA PUBLICATION|Exercise SECTION - III|10 Videos
  • GOV. MODEL QUESTION PAPER - 1

    SURA PUBLICATION|Exercise Section - IV|11 Videos
  • INTEGRAL CALCULUS

    SURA PUBLICATION|Exercise Section - D (5 marks)|3 Videos

Similar Questions

Explore conceptually related problems

int(dx)/(sqrt(2e^(x)-1))=

int(6x+5)/(sqrt(3x^(2)+5x+1))dx :

Evaluate int(1)/(sqrt(x(3-2x)))dx .

int ( x + 2)/( sqrt( x^(2) - 1)) dx is

Evaluate: int(x^2)/(sqrt(1-x^6))dx

int(x + 2)/(sqrt(x^2 - 1)) dx ………………… .

Find int(2x+3)/(sqrt(x^(2)+x+1))dx

Find int(1)/(sqrt(5x^(2)-2x))dx .

Evaluate int(1)/(sqrt(2x-x^(2)))dx .