Home
Class 11
MATHS
If A = {: [ ( 1,0,0) , ( 0,1,0) , ( a,b...

If ` A = {: [ ( 1,0,0) , ( 0,1,0) , ( a,b,-1)]:}` show that ` A^(2) ` is a unit matrix .

Text Solution

Verified by Experts

The correct Answer is:
`A^(2) `
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • SURAS MODEL QUESTION PAPER -2

    SURA PUBLICATION|Exercise section -IV|7 Videos
  • SURAS MODEL QUESTION PAPER -2

    SURA PUBLICATION|Exercise Section - II|10 Videos
  • SURAs MODEL QUESTION PAPER - 1

    SURA PUBLICATION|Exercise PART-IV|11 Videos
  • TRIGONOMETRY

    SURA PUBLICATION|Exercise SECTION - D|5 Videos

Similar Questions

Explore conceptually related problems

If A= {:[( 1,0,1),(0,1,2),(0,0,4)]:} ,then show that |3A| =27|A|

If A=[{:(1,0,0),(1,0,1),(0,1,0):}] , then

Knowledge Check

  • [(1, 7, -3), (0, 2, 4), (0, 0, 7)] is a ___ matrix.

    A
    scalar
    B
    upper triangular
    C
    Diagonal
    D
    lower triangular
  • Similar Questions

    Explore conceptually related problems

    If A = [(0,1,1),(1,0,1),(1,1,0)] show that A^(-1) =(1)/(2) (A^(2)=3I).

    If A=[{:(0,1,1),(1,0,1),(1,1,0):}] show that A^(-1)=(1)/(2)(A^(2)=3I)

    Let a and b be two real numbers such that a > 1, b > 1. If A=[(a,0), (0,b)] , then lim_(n to oo) A^(-n) is a. unit matrix b. null matrix c. 2l d. none of these

    If A= ((2,3),(-1,2)) .Show that A^(2)-4A+7I=0 whwre I is the unit matrix of order 2.

    If A= [{:(0,1,1),(1,0,1),(1,1,0):}], "show that" A^(-1)=(1)/(2)(A^(2)-3I)

    If A=[(0,1,1),(1,0,1),(1,1,0)] show that A^(-1)=1/2(A^(2)-3I) .

    Let for A=[(1,0,0),(2,1,0),(3,2,1)] , there be three row matrices R_(1), R_(2) and R_(3) , satifying the relations, R_(1)A=[(1,0,0)], R_(2)A=[(2,3,0)] and R_(3)A=[(2,3,1)] . If B is square matrix of order 3 with rows R_(1), R_(2) and R_(3) in order, then The value of det. (2A^(100) B^(3)-A^(99) B^(4)) is