Home
Class 14
MATHS
lim(x rarr0)(a^(x)-1)/(x)...

lim_(x rarr0)(a^(x)-1)/(x)

Promotional Banner

Similar Questions

Explore conceptually related problems

The value of lim_(x rarr0)(e^(x)-1)/(x) is-

lim_(x rarr0)(2^(x)-1)/(x)

Evaluate : lim_(x rarr0)(a^(2x)-1)/(x)

Using lim_(x rarr 0) (e^(x)-1)/(x)=1, deduce that, lim_(x rarr 0) (a^(x)-1)/(x)=log_(e)a [agt0].

lim_(x rarr0)(2^(2x)-1)/(x)

lim_(x rarr0)(2^(5x)-1)/(x)

lim_(x rarr0)(a^(x)-1)/(sin x)=

If f'(x)=f(x) and f(0)=1 then lim_(x rarr0)(f(x)-1)/(x)=

lim_(x rarr0)(x^(2)-1)/(x^(2))

lim_(x rarr0)(b^(x)-1)/(a^(x)-1)