Home
Class 6
MATHS
" If "bar(a)" is parallel to "bar(b)time...

" If "bar(a)" is parallel to "bar(b)timesbar(c)," then "(bar(a)timesbar(b))*(bar(a)timesbar(c))=

Promotional Banner

Similar Questions

Explore conceptually related problems

If bar(a) is parallel to bar(b)xxbar(c), then (bar(a)xxbar(b))(bar(a)xxbar(c))=

If [bar(a) bar(b) bar(c)]=2 then [2(bar(b)timesbar(c))(bar(-c)timesbar(a))(bar(b)timesbar(a))] is equal to

If [bar(a) bar(b) bar(c)]=2 ,then [2(bar(b)timesbar(c))(-bar(c)timesbar(a))(bar(b)timesbar(a))] is equal to

If bar(a)+bar(b)+bar(c)=bar(0) then bar(a)timesbar(b)=

The point of intersection of the lines bar(r)timesbar(a)=bar(b)timesbar(a) and bar(r)timesbar(b)=bar(a)timesbar(b) is 1. bar(a)-bar(b) 2. bar(a)+bar(b) 3. 2bar(a)+3bar(b) 4. 3bar(a)-2bar(b)

bar(a),bar(b),bar(c) are vectors such that [bar(a)bar(b)bar(c)]=4 then [bar(a)timesbar(b) bar(b)timesbar(c) bar(c)timesbar(a)] is (A) 16 (B) 64 (C) 4 (D)8

For any vector bar(a) ,the vector (bar(a)timesbar(i))^(2)+(bar(a)timesbar(j))^(2)+(bar(a)timesbar(k))^(2) is equal to A) 3|bar(a)|^(2) B) |bar(a)|^(2) C) 2|bar(a)|^(2) D) 4|bar(a)|^(2)

(bar(a)times(bar(b)+bar(c))+bar(b)times(bar(c)+bar(a))+bar(c)times(bar(a)+bar(b)))*(bar(a)timesbar(b))|= (A) |bar(b)timesbar(c)| (B) |bar(c)timesbar(a)| (C) |bar(a)timesbar(b)+bar(b)timesbar(c)+(bar(c)timesbar(a))| (D) 0

If bar(a), bar(b), bar(c) are non-coplanar vectors and x, y, z are scalars such that bar(a)=x(bar(b)timesbar(c))+y(bar(c)timesbar(a))+z(bar(a)timesbar(b)) then x =

If |bar(a)| =2 and |bar(b)|=3 and bar(a).bar(b)=0 then |(bar(a)times(bar(a)times(bar(a)times(bar(a)timesbar(b)))))|-