Home
Class 11
PHYSICS
The position vectors of two point masses...

The position vectors of two point masses 10 kg and 5 kg are `(-3vec(i)+2vec(j)+4vec(k))m " and " (3vec(i)+6vec(j)+5vec(k))m` respectively. Locate the position of centre of mass.

Text Solution

Verified by Experts

`m_(1)=10kg, m_(2)=5kg`
`vec(r)_(1)=(-3hat(i)+2hat(j)+4hat(j))m`
`vec(r)_(2)=(3hat(i)+6hat(j)+5hat(k))m`
`vec(r)=(m_(1)vec(r_(1))+m_(2)vec(r_(2)))/(m_(1)+m_(2))`
`vec(r)=(10(-3hat(i)+2hat(j)+4hat(k))+5(3hat(i)+6hat(j)+5hat(k)))/(10+5)`
`" "=(-30hat(i)+20hat(j)+40hat(k)+15hat(i)+30hat(j)+25hat(k))/15`
`" "=(-15hat(i)+50hat(j)+65hat(k))/15`
`vec(r)=(-hat(i)+10/3hat(j)+13/3hat(k))m`
The center of mass is located at position `vec(r)`
Promotional Banner

Topper's Solved these Questions

  • QUARTERLY COMMON EXAMINATION - 2019

    SURA PUBLICATION|Exercise PART - IV|10 Videos
  • QUARTERLY COMMON EXAMINATION - 2019

    SURA PUBLICATION|Exercise PART - II|9 Videos
  • PUBLIC EXAM QUESTION PAPER MARCH-2019

    SURA PUBLICATION|Exercise Part-IV|10 Videos
  • SURAS MODEL QUESTION PAPER -2 ( PHYSICS )

    SURA PUBLICATION|Exercise PART - IV|10 Videos

Similar Questions

Explore conceptually related problems

The position vectors of the vertices of a triangle are vec(i) +2 vec(j) +3 vec(k) , 3 vec(i) -4 vec(j) +5 vec (k) and -2vec (i) +3 vec (j) - 7 vec (k) Find the perimeter of a triangle .

Find the torque of the resultant of the three forces represented by -3 vec(i) + 6 vec(j) - 3 vec(k) , 4 vec(i) - 10 vec(j) + 12 vec(k), and 4 vec(i) + 7 vec(j) acting at the point with position vector 8 vec(i) - 6 vec(j) - 4 vec(k) , about the point with position vector 18 vec(i) + 3 vec(j) - 9 vec(k) .

Show that the vector veci -2 vec j +3 vec k , -2 vec i + 3 vecj -4 vec k " and " -vec j + 2 vec k are coplanar.

Show that the vector veci -2 vec j +3 vec k , -2 vec i + 3 vecj -4 vec k " and " -vec j + 2 vec k are coplanar.

Find lambda if the vectors vec a= vec i+3 vec j+ vec k , vec b= 2 vec i- vec j- vec k and vec c= lambda vec i+7 vec j+ 3 vec k are coplanar

Find the angle between the line vec r=( vec i+2 vec j- vec k)+lambda( vec i- vec j+ vec k) and the normal to the plane vec rdot((2 vec i- vec j+ vec k))=4.

Consider the vectors vec a = hat i + 2 hat j - 3 hat k and vec b = 4 hat i - hat j + 2 hat k . (i) Find |vec a| and |vec b| . (ii) Find vec a. vec b (iii) Find the projections of vec a on vec b and vec b on vec a .

If vec a = 3 hat i - hat j - 5 hatk, vec b = hat i - 5 hat j + 3 hat k , show that vec a + vec b and vec a - vec b are perpendicular. (b) Given the position vectors of three points A(hat i - hat j + 2 hat k) B (4 hat i + 5 hat j + 8 hat k) C (3 hat i + 3 hat j + 6 hat k) (i) Find vec(AB) and vec(AC) (ii) Prove that A, B, C are collinear points.

For any vector vec(a)," prove that "hat(i)xx(vec(a)xxvec(i))+hat(j)xx(vec(a)xxvec(j))+hat(k)xx(vec(a)xxhat(k))=2vec(a).

The position vectors of the vertices of DeltaABC are 3 hat i - 4 hat j - 4 hat k , 2 hat i - hat j + hat k and hat i - 3 hat j - 5 hat k respectively. (i) Find vec (AB), vec(BC) and vec(CA) . (ii) Prove that DeltaABC is a right angled triangle. (iii) Find the unit vector perpendicular to both vec (AB) and vec(BC) .