Home
Class 13
MATHS
int(0)^(1)(1-x)^(9)dx=...

int_(0)^(1)(1-x)^(9)dx=

Promotional Banner

Similar Questions

Explore conceptually related problems

int_(0)^(1)x(1-x)^(9y)dx

Evaluate : (i) int_(0)^(1)x(1-x)^(n)dx (ii) int_(0)^(1)x(1-x)^(3//2)dx

What is int_(0)^(1)x (1-x)^(9) dx equal to ?

int_0^(1) x (1-x)^(9) dx =

int_(0)^(1)(x)/(x+1)dx=

If int_(0)^(1)f(x)dx=1, int_(0)^(1)x f(x)dx=a and int_(0)^(1)x^(2)f(x)dx=a^(2) , then : int_(0)^(1)(a-x)^(2)f(x)dx=

int_(0)^(1)(1)/(1+x)dx=

Evaluate I(b)=int_(0)^(1)(x^(b))dx=int_(0)^(1)(x^(b)-1)/("ln"x)dx,bge0 .

Evaluate I(b)=int_(0)^(1)(x^(b))dx=int_(0)^(1)(x^(b)-1)/("ln"x)dx,bge0 .

int_(0)^(1)(1+e^(-x))dx=