Home
Class 12
MATHS
Statement I : sin^2pi/8+sin^2(3pi)/8+sin...

Statement I : `sin^2pi/8+sin^2(3pi)/8+sin^2(5pi)/8+sin^2(7pi)/8=2` Statement II `cos^2pi/8+cos^2(3pi)/8+cos^2(5pi)/8+cos^2(7pi/8)=2` Statement III: `sin^2pi/8+sin^(3pi)/8+sin^2(5pi)/8sin^2(7pi)/8=3/2`

Promotional Banner

Similar Questions

Explore conceptually related problems

Statement I : sin^2pi/8+sin^2(3pi)/8+sin^2(5pi)/8+sin^2(7pi)/8=2 Statement II sin^4pi/8+sin^4 (3pi)/8+sin^4(5pi)/8sin^4(7pi)/8=3/2

Show that: sin^2 pi/8 + sin^2 (3pi)/8+sin^2 (5pi)/8+sin^2 (7pi)/8=2

Prove cos^2(pi/8)+cos^2(3pi/8)+cos^2(5pi/8)+cos^2(7pi/8)=2

cos^2(pi/8) +cos^2((3pi)/8) +cos^2((5pi)/8)+cos^2 ((7pi)/8)=2

Evaluate cos^2(pi/8)+cos^2((3pi)/8)+cos^2((5pi)/8)+cos^2((7pi)/8)=2

Prove that sin^2(pi/8)+sin^2(3pi/8)+sin^2(5pi/8)+sin^2(7pi/8)=2

Evaluate : cos^2(pi/8)+cos^2((3pi)/8)+cos^2((5pi)/8)+cos^2((7pi)/8)

Prove that sin^2(pi/8)+sin^2((3pi)/8)+sin^2((5pi)/8)+sin^2((7pi)/8)=2

Prove that: sin^2(pi/8)+sin^2((3pi)/8)+sin^2((5pi)/8)+sin^2((7pi)/8)=2