Home
Class 11
MATHS
Let f(n)=sum(r=0)^nsum(k=r)^n(k r)dot Fi...

Let `f(n)=sum_(r=0)^nsum_(k=r)^n(k r)dot` Find the total number of divisors of `f(9)dot`

Promotional Banner

Similar Questions

Explore conceptually related problems

Let f(n)=sum_(r=0)^nsum_(k=r)^n(kC r) Find the total number of divisors of f(9)dot

Let f(n)=sum_(r=0)^(n)sum_(k=r)^(n)([kr]). Find the total number of divisors of f(9)

Let f(n)=sum_(r=0)^(n)sum_(k=r)^(n)([kr]). Also if f(n)=2047 ,then find the value of n

Let f(n)=sum_(r=1)^(n)r^(2)C_(r)^(2)* Then ,f(5)=

If sum_(r=1)^n r=55 , F i nd sum_(r=1)^n r^3dot

If f(x)=sum_(k=0)^(n)a_(k)|x-1|^(k), where a_(i)in R, then

If sum_(r=1)^n r=55 ,\ fin d\ sum_(r=1)^n r^3dot

If f(n)=sum_(r=2)^(n)[r^(2)(nC_(r)-nC_(r-2)+4(r+1)n_(r)] ,then the largest prime divisor of f(2018) is

Find the sum of the series sum_(r=1)^n rxxr !dot

Find the sum of the series sum_(r=1)^n rxxr !dot