Home
Class 12
MATHS
[1,cos(beta-alpha),cos(gamma-alpha)],[co...

[1,cos(beta-alpha),cos(gamma-alpha)],[cos(alpha-beta),1,cos(gamma-beta)],[cos(alpha-gamma),cos(beta-gamma),1]|=

Promotional Banner

Similar Questions

Explore conceptually related problems

Without expanding, show that the following determinants vanish: {:|(1,cos(beta-alpha),cos(gamma-alpha)),(cos(alpha-beta),1,cos(gamma-beta)),(cos(alpha-gamma)),cos(beta-gamma),1|

A=[(1, cos (beta-alpha),cos(gamma-alpha)),(cos (alpha-beta), 1, cos(gamma-beta)),(cos (alpha-gamma),cos (beta-gamma),1)]=

If alpha,beta,gamma are real numbers, then without expanding at any stage, show that |1cos(beta-alpha)"cos"(gamma-alpha)"cos"(alpha-beta)1"cos"(gamma-beta)"cos"(alpha-gamma)"cos"(beta-gamma)1|=0

If alpha,beta,gamma are real numbers, then without expanding at any stage, show that |1cos(beta-alpha)"cos"(gamma-alpha)"cos"(alpha-beta)1"cos"(gamma-beta)"cos"(alpha-gamma)"cos"(beta-gamma)1|=0

If alpha,beta,gamma are real numbers, then without expanding at any stage, show that |1cos(beta-alpha)"cos"(gamma-alpha)"cos"(alpha-beta)1"cos"(gamma-beta)"cos"(alpha-gamma)"cos"(beta-gamma)1|=0

det [[1, cos (beta-alpha), cos (gamma-alpha) cos (alpha-beta), 1, cos (gamma-beta) cos (beta-alpha), cos (beta-gamma), 1]] =

If alpha , beta , lambda are three real numbers and A=[(1,cos(alpha-beta),cos(alpha-gamma)),(cos(beta-alpha),1,cos(beta-gamma)),(cos(gamma-alpha),cos(gamma-beta),1)] , then which of following is not true A)A is singular B)A is symmetric C)A is orthogonal D)A is not invertible

Prove that : cos^2 (beta-gamma) + cos^2 (gamma-alpha) + cos^2 (alpha-beta) =1+2cos (beta-gamma) cos (gamma-alpha) cos (alpha-beta) .

Prove that : cos^2 (beta-gamma) + cos^2 (gamma-alpha) + cos^2 (alpha-beta) =1+2cos (beta-gamma) cos (gamma-alpha) cos (alpha-beta) .