Home
Class 11
MATHS
Prove that sum(r=0)^n^n Crsinr xcos(n-r)...

Prove that `sum_(r=0)^n^n C_rsinr xcos(n-r)x=2^(n-1)sin(n x)dot`

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that sum_(r=0)^(n)C_(r)sin rx cos(n-r)x=2^(n-1)sin(nx)

Prove that sum_(r=0)^(n) ""^(n)C_(r )sin rx. cos (n-r)x = 2^(n-1) xx sin nx .

Prove that sum_(r=0)^(n) ""^(n)C_(r )sin rx. cos (n-r)x = 2^(n-1) xx sin nx .

Prove that sum_(r = 0)^n r^2 . C_r = n (n +1).2^(n-2)

Prove that sum_(r = 0)^n r^2 . C_r = n (n +1).2^(n-2)

Show that sum_(k =0)^(n) C_(k) *sin (kx) cos (n-k) x = 2^(n-1)sin n x where C_(r )= ""^(n)C_(r )

Prove that sum_(r = 0)^n r^3 . C_r = n^2 (n +3).2^(n-3)

Prove that sum_(r = 0)^n r^3 . C_r = n^2 (n +3).2^(n-3)

Prove that sum_(r=0)^n r(n-r)(^nC_ r)^2=n^2(^(2n-2)C_n)dot

Prove that sum_(r=0)^n r(n-r)(.^nC_ r)^2=n^2(.^(2n-2)C_n)dot