Home
Class 12
MATHS
[" 146."I(n)=int(0)^( pi/4)tan^(n)xdx" ,...

[" 146."I_(n)=int_(0)^( pi/4)tan^(n)xdx" ,then "lim_(n rarr oo)n[I_(n)+I_(n-2)]" equals "],[[" (a) "1/2," (b) "1],[" (c) "x," (d) "0]]

Promotional Banner

Similar Questions

Explore conceptually related problems

I_(n)=int_(0)^(pi//4)tan^(n)xdx , then lim_(n to infty) n[I_(n)+I_(n-2)] equals :

l_(n)=int_(0)^(pi//4)tan^(n)xdx , then lim_(nto oo)n[l_(n)+l_(n-2)] equals

l_(n)=int_(0)^(pi//4)tan^(n)xdx , then lim_(nto oo)n[l_(n)+l_(n-2)] equals

If I_n = int_0^(pi//4) tan^n x dx , then lim_(n to oo) n [I_n + I_(n -2)] equals :

If I_(n)=int_(0)^(pi//4) tan^(n) x dx, lim_(n to oo) n(I_(n+1)+I_(n-1)) equals

let I_(n)=int_(0)^((pi)/(4))tan^(n)xdx,n>1

I_n= int_0^(pi/4) tan^(n)xdx then I_3+I_5 is

If I_(n)=int_(0)^(pi//4) tan^(n) x dx then {:(" " Lt),(n rarr oo):}n(I_(n)+I_(n+2))=