Home
Class 12
MATHS
lim(n rarr n)sum(r=1)^(n)(r)/(n^(2)+n+r)...

lim_(n rarr n)sum_(r=1)^(n)(r)/(n^(2)+n+r)" equals "

Promotional Banner

Similar Questions

Explore conceptually related problems

If sum_(r=1)^(n)a_(r)=(1)/(6)n(n+1)(n+2) for all n>=1 then lim_(n rarr oo)sum_(r=1)^(n)(1)/(a_(r)) is

Find the value of lim_(n rarr oo)sum_(r=1)^(n)(r^(2))/(n^(3)+n^(2)+r)

The value of lim_(n rarr oo)(1)/(n)sum_(r=1)^(n)((r)/(n+r)) is equal to

lim_(n rarr oo)sum_(r=2n+1)^(3n)(n)/(r^(2)-n^(2)) is equal to

lim_(n rarr oo) sum_(r=0)^(n-1) 1/(n+r) =

lim_(nto oo)sum_(r=1)^(n)r/(n^(2)+n+4) equals

lim_(nto oo)sum_(r=1)^(n)r/(n^(2)+n+4) equals

Let the rth term, t_(r) , of a series is given by : t_(r) = (r)/(1+r^(2) + r^(4)) . "Then" lim_(n rarr oo) sum_(r = 1)^(n) t_(r) equals :