Home
Class 11
MATHS
" The value of "lim(n rarr oo)((n+2)!+(n...

" The value of "lim_(n rarr oo)((n+2)!+(n+1)!)/((n+3)!)" is "

Promotional Banner

Similar Questions

Explore conceptually related problems

lim_(n rarr oo)2^(1/n)

the value of lim_(x rarr oo)(n!)/((n+1)!-n!)

The value of lim_(n rarr oo)((1)/(2^(n))) is

lim_(n rarr oo)(1-(2)/(n))^(n)

lim_(n rarr oo)((-1)^(n)n)/(n+1)

lim_(n rarr oo)(2^(n)+3^(n))^(1/n)

lim_(n rarr oo)(2^(3n))/(3^(2n))=

The value of lim_(n rarr oo) n[log(n+1)-logn] is

lim_ (n rarr oo) ((n-1) (n-2) (n-3)) / (n ^ (3))