Home
Class 12
MATHS
sum(r=1)^(r=n)(r^(4)+r^(2)+1)/(r^(4)+r)=...

sum_(r=1)^(r=n)(r^(4)+r^(2)+1)/(r^(4)+r)=(675)/(26)

Promotional Banner

Similar Questions

Explore conceptually related problems

{:(" "Lt),(n rarr oo):} sum_(r=1)^(n)((r^(3))/(r^(4)+n^(4)))=

If sum_(r=1)^(n)r^(4)=F(x), then prove that the value of sum_(n=1)^(n)r(n-r)^(3) is (1)/(4)[n^(3)(n+1)^(2)-4F(x)]

Statement -2: sum_(r=0)^(n) (-1)^( r) (""^(n)C_(r))/(r+1) = (1)/(n+1) Statement-2: sum_(r=0)^(n) (-1)^(r) (""^(n)C_(r))/(r+1) x^(r) = (1)/((n+1)x) { 1 - (1 - x)^(n+1)}

Statement -2: sum_(r=0)^(n) (-1)^( r) (""^(n)C_(r))/(r+1) = (1)/(n+1) Statement-2: sum_(r=0)^(n) (-1)^(r) (""^(n)C_(r))/(r+1) x^(r) = (1)/((n+1)x) { 1 - (1 - x)^(n+1)}

sum_(r=1)^(n) (-1)^(r-1) ""^nC_r(a - r) =

sum_(r=1)^(n) (-1)^(r-1) ""^nC_r(a - r) =

lim_(n to oo) sum_(r=1)^(n) ((r^(3))/(r^(4) + n^(4))) equals to-