Home
Class 12
MATHS
" If "=sin(x^(x))," prove that "(dy)/(dx...

" If "=sin(x^(x))," prove that "(dy)/(dx)=cos(x^(x))*x^(x)(1+log x)

Promotional Banner

Similar Questions

Explore conceptually related problems

If y=sin(x^(x)), prove that (dy)/(dx)=cos(x^(x))x^(x)(1+log x)

If y=sin(x^x) , prove that (dy)/(dx)=cos(x^x) .x^x(1+logx)

if y=log x^(x) prove that (dy)/(dx)=1+log x

If x^(x)+y^(x)=1, prove that (dy)/(dx)=-{(x^(x)(1+log x)+y^(x)log y)/(xy^((x-1)))}

If y=log(x+(1)/(x)), prove that (dy)/(dx)=(x-1)/(2x(x+1))

"If "x^(y)=e^(x-y)," prove that "(dy)/(dx)=(log x)/((1+log x)^(2)).

"If "x^(y)=e^(x-y)," prove that "(dy)/(dx)=(log x)/((1+log x)^(2)).

If y=(sin x)^((sin x))srove that (dy)/(dx)=(y^(2)cos x)/((1-y log sin x))

If y=x^(x^(x^(...oo))) , then prove that, (dy)/(dx)=(y^(2))/(x(1-y log x)) .

(dy)/(dx)-x sin^(2)x=(1)/(x log x)