Home
Class 12
MATHS
[ff(x)=[[cos x,-sin x,0],[sin x,cos x,0]...

[ff(x)=[[cos x,-sin x,0],[sin x,cos x,0],[0,0]]],[" Show that "f(x)*f(y)=f(x+y)]

Promotional Banner

Similar Questions

Explore conceptually related problems

If f(x)=[[cos x,-sin x,0],[sin x,cos x,0],[0,0,1]] , show that f(x).f(y)=f(x+y)

Let f(x)= [[cos x, -sin x, 0],[sin x, cos x, 0],[0,0,1]] ,Show that f (x) f(y)= f(x+y) .

F(x) =[[cos x, -sin x, 0],[ sin x, cos x, 0],[ 0, 0, 1]] Show that F(x) F(y)=F(x+y)

If F (x) = [[cos x,-sin x,0],[sin x, cos x, 0],[0,0,1], then show that F(x) F(y)= F (x+y).

If F(x) =[(cos x, -sin x,0),(sin x,cos x,0),(0,0,1)] show that F(x)F(y)=F(x+y)

If F(x)=[[cos x,-sin x,0sin x,cos x,00,0,1]], then which of

If f (x)={:((cos x,-sin x,0),(sin x,cos x,0),(0,0,1)):},"show that "(f(x))^(-1) = f(-x) .

If A= [[cos x,sin x,0],[-sin x,cos x,0],[0,0,1]]=f(x) then A^-1=

Let F(x)=[cos x-sin x0sin x cos x0001] Show that F(x)F(y)=F(x+y)

If f(x) = [(cos x , - sinx,0),(sinx,cosx,0),(0,0,1)] then show f(x) . f(y) = f(x+y)