Home
Class 12
MATHS
Let f(x) be a contiuous function such a ...

Let `f(x)` be a contiuous function such a `int_n^(n+1) f(x)dx=n^3, n in Z.` Then, the value of the intergral `int_-3^3 f(x) dx` (A) 9 (B) `-27` (C) `-9` (D) none of these

Promotional Banner

Similar Questions

Explore conceptually related problems

Let f(x) be a continuous function such that int_(n)^(n+1) f(x) dx=n^(3) , ninZ . Then the value of the integeral int_(-3)^(3) f(x) dx, is

If int_(n)^(n+1) f(x) dx = n^(2) +n, AA n in I then the value of int_(-3)^(3) f(x) dx is equal to

If f(x) is continuous and int_(0)^(9)f(x)dx=4 , then the value of the integral int_(0)^(3)x.f(x^(2))dx is

If f(x) is continuous and int_(0)^(9)f(x)dx=4 , then the value of the integral int_(0)^(3)x.f(x^(2))dx is

If f(x) is continuous and int_(0)^(9)f(x)dx=4 , then the value of the integral int_(0)^(3)x.f(x^(2))dx is

If f(x) is continuous and int_(0)^(9)f(x)dx=4 , then the value of the integral int_(0)^(3)x.f(x^(2))dx is

suppose for every integer n, int_n^(n+1)f(x)dx=n^2 then the value of int_(-2)^4 f(x)dx is

If for every ineger n , int_(n)^(n+1) f(x) dx=n^(2) then the value of int_(-2)^(4) f(x)dx=

f(x) is a continuous function for all real values of x and satisfies int_n^(n+1)f(x)dx=(n^2)/2AAn in Idot Then int_(-3)^5f(|x|)dx is equal to (19)/2 (b) (35)/2 (c) (17)/2 (d) none of these