Home
Class 12
MATHS
If sin^(-1) x +sin^(-1) y +sin^(-1) z =p...

If `sin^(-1) x +sin^(-1) y +sin^(-1) z =pi` then `x^4 +y^4 +z^4 +4x^2 y^2 z^2`

Promotional Banner

Similar Questions

Explore conceptually related problems

If sin^-1x + sin^-1 y + sin^-1 z = pi , prove that x^4 + y^4 + z^4 + 4x^2y^2z^2 = 2(x^2y^2 + y^2z^2 + z^2x^2)

If sin^(-1)x +cos^(-1)y +sin^(-1)z=2pi then 2x-z+y is :

If "sin"^(-1)x + "sin"^(-1)y +"sin"^(-1)z = pi "prove that" x^4+y^4+z^4 +4x^2y^2z^2=2(x^2y^2+y^2z^2+z^2x^2)

IF sin^(-1) X+ sin^(-1) y+ sin^(-1) z= pi , then prove that x^4 +y^4+ z^4 +4x^2 y^2 z^2 = 2(x^2 y^2 +y^2 z^2+z^2x^2).

If sin^(-1)x+sin^(-1)y+sin^(-1)z=pi, then x^(4)+y^(2)+z^(4)+4x^(2)y^(2)z^(2)=K(x^(2)y^(2)+y^(2)z^(2)+z^(2)x^(2)) where K is equal to 1( b) 2(c)4(d) none of these

If sin^(-1)x+sin^(-1)y+sin^(-1)z=pi , show that x^4+y^4+z^4+4x^2y^2z^2=2(x^2y^2+y^2z^2+z^2x^2)

If sin^(-1)x+sin^(-1)y+sin^(-1)z=pi , show that x^4+y^4+z^4+4x^2y^2z^2=2(x^2y^2+y^2z^2+z^2x^2)

If sin^(-1)x+sin^(-1)y+sin^(-1)z=pi , show that x^4+y^4+z^4+4x^2y^2z^2=2(x^2y^2+y^2z^2+z^2x^2)

If sin ^ (- 1) x + sin ^ (- 1) y + sin ^ (- 1) z = pi show that, x ^ (4) + y ^ (4) + z ^ (4) + 4x ^ ( 2) y ^ (2) z ^ (2) = 2 (x ^ (2) y ^ (2) + y ^ (2) z ^ (2) + z ^ (2) x ^ (2))