Home
Class 11
MATHS
If ("tan"(theta+alpha))/a=""("tan"(theta...

If `("tan"(theta+alpha))/a=""("tan"(theta+beta))/b=""("tan"(theta+gamma))/c` `(a+b)/(a-b)sin^2(alpha-beta)+(b+c)/(b-c)sin^2(beta-gamma)+(c+a)/(c-a)sin^2(gamma-alpha)=0`

Promotional Banner

Similar Questions

Explore conceptually related problems

If ("tan"(theta+alpha))/a=""("tan"(theta+beta))/b=""("tan"(theta+gamma))/c then (a+b)/(a-b)sin^2(alpha-beta)+(b+c)/(b-c)sin^2(beta-gamma)+(c+a)/(c-a)sin^2(gamma-alpha)=0

If ("tan"(theta+alpha))/a=""("tan"(theta+beta))/b=""("tan"(theta+gamma))/c then prove (a+b)/(a-b)sin^2(alpha-beta)+(b+c)/(b-c)sin^2(beta-gamma)+(c+a)/(c-a)sin^2(gamma-alpha)=0

If ("tan"(theta+alpha))/a=""("tan"(theta+beta))/b=""("tan"(theta+gamma))/c then prove (a+b)/(a-b)sin^2(alpha-beta)+(b+c)/(b-c)sin^2(beta-gamma)+(c+a)/(c-a)sin^2(gamma-alpha)=0

If (tan (theta+alpha))/a= (tan (theta+beta))/b= (tan (theta+ gamma))/c , prove that : (a+b)/(a-b) sin^2 (alpha- beta) +(b+c)/(b-c) sin^2 (beta-gamma)+ (c+a)/(c-a) sin^2 (gamma-alpha)=0 .

If x/(tan (theta + alpha)) = y/(tan (theta + beta)) = z/tan(theta + gamma), "prove that" (x+y)/(x-y)sin^(2) (alpha - beta) + (y + z)/(y - z) sin^(2) (beta - gamma) + (z + x)/(z-x) sin^(2) (gamma - alpha ) = 0

Let (sin(theta-alpha))/("sin"(theta-beta))=a/b a n d(cos(theta-alpha))/("cos"(theta-beta))=c /d t h e n(a c+b d)/(a d+b c)= (a) cos(alpha-beta) (b) sin(alpha-beta) sin(alpha+beta) (d) none of these

Let (sin(theta-alpha))/("sin"(theta-beta))=a/b a n d(cos(theta-alpha))/("cos"(theta-beta))=c /d t h e n(a c+b d)/(a d+b c)= (a) cos(alpha-beta) (b) sin(alpha-beta) sin(alpha+beta) (d) none of these

If (tan(alpha+beta-gamma))/(tan(alpha-beta+gamma))=(tan gamma)/(tan beta),(beta!=gamma) then sin2 alpha+sin2 beta+sin2 gamma=(a)0(b)1(c)2(d)(1)/(2)

If (tan(alpha+beta-gamma))/("tan"(alpha-beta+gamma))=(tangamma)/(tanbeta),(beta!=gamma) then sin2alpha+sin2beta+sin2gamma= (a) 0 (b) 1 (c) 2 (d) 1/2

If (tan(alpha+beta-gamma))/("tan"(alpha-beta+gamma))=(tangamma)/(tanbeta),(beta!=gamma) then sin2alpha+sin2beta+sin2gamma= (a) 0 (b) 1 (c) 2 (d) 1/2