Home
Class 12
MATHS
z1,z2 and z3 are the vertices of a trian...

`z_1,z_2 and z_3` are the vertices of a triangle ABC such that `|z_1| =|z_2| =|z_3| and AB= AC`. Then `((z_1+z_3)(z_1+z_2))/(z_2+z_3)^2` is

Promotional Banner

Similar Questions

Explore conceptually related problems

If z_1,z_2,z_3 are the vertices of a triangle then its centroid is

If z_1, z_2 and z_3 , are the vertices of an equilateral triangle ABC such that |z_1 -i| = |z_2 -i| = |z_3 -i| .then |z_1 +z_2+ z_3| equals:

If z_1, z_2 and z_3 , are the vertices of an equilateral triangle ABC such that |z_1 -i| = |z_2 -i| = |z_3 -i| .then |z_1 +z_2+ z_3| equals:

If z_1,z_2,z_3 be the vertices of a triangle ABC such that |z_1|=|z_2|=|z_3| and |z_1+z_2|^2= |z_1|^2+|z_2|^2, then |arg, ((z_3-z_1)/(z_3-z_2))|= (A) pi/2 (B) pi/3 (C) pi/6 (D) pi/4

If z_1,z_2,z_3 be the vertices of a triangle ABC such that |z_1|=|z_2|=|z_3| and |z_1+z_2|^2= |z_1|^2+|z_2|^2, then |arg, ((z_3-z_1)/(z_3-z_2))|= (A) pi/2 (B) pi/3 (C) pi/6 (D) pi/4

If z_1,z_2,z_3 are vertices of a triangle such that |z_1-z_2|=|z_1-z_3| then arg ((2z_1-z_2-z_3)/(z_3-z_2)) is :

If z_1,z_2,z_3 are vertices of a triangle such that |z_1-z_2|=|z_1-z_3| then arg ((2z_1-z_2-z_3)/(z_3-z_2)) is :

If z_1,z_2,z_3 are vertices of a triangle such that |z_1-z_2|=|z_1-z_3| then arg ((2z_1-z_2-z_3)/(z_3-z_2)) is :

If z_1, z_2 and z_3 , are the vertices of an equilateral triangle ABC such that |z_1 -i = |z_2 -i| = |z_3 -i| .then |z_1 +z_2+ z_3| equals:

If z_1, z_2 and z_3 , are the vertices of an equilateral triangle ABC such that |z_1 -i| = |z_2 -i| = |z_3 -i| .then |z_1 +z_2+ z_3| equals to : a) 3sqrt(3) b) sqrt(3) c) 3 d) 1/(3sqrt(3))