Home
Class 12
MATHS
If the sum of the series sum(r=1)^oocot^...

If the sum of the series `sum_(r=1)^oocot^(- 1)(2^(r+1)+1/(2^r))` is `cot^-1(k),` then the fundamental period of the function `f(x)=sec(sec k x)+sec(cosec k x),` is

Promotional Banner

Similar Questions

Explore conceptually related problems

The sum sum_(k=1)^oocot^(-1)(2k^2) equals

The sum sum_(k=1)^oocot^(-1)(2k^2) equals

If sum_(r=1)^(oo) cot^(-1)(((r+1)^(2))/(2))=tan^(-1)x then x is equal to

Sum of the series sum_(k=1)^(oo)sum_(r=0)^(k)(2^(2r))/(7^(k))(""^(k)C_(r)) is:

The range of function f(x)=cot^(-1)x+sec^(-1)x+ cosec^(-1)x is

The range of function f(x)=cot^(-1)x+sec^(-1)x+cosec^(-1)x is

The domain of the function f(x)=cos^(-1)(sec(cos^-1 x))+sin^(-1)(cosec(sin^(-1)x)) is

The domain of the function f(x)=cos^(-1)(sec(cos^-1 x))+sin^(-1)(cosec(sin^(-1)x)) is

The domain of the function f(x)=cos^(-1)(sec(cos^-1 x))+sin^(-1)(cosec(sin^(-1)x)) is

The domain of the function f(x)=cos^(-1)(sec(cos^-1 x))+sin^(-1)(cosec(sin^(-1)x)) is