Home
Class 12
MATHS
Let a real valued function f satisfy f(x...

Let a real valued function f satisfy `f(x + y) = f(x)f(y)AA x, y in R and f(0)!=0` Then `g(x)=f(x)/(1+[f(x)]^2)` is

Promotional Banner

Similar Questions

Explore conceptually related problems

Let f(x+y)+f(x-y)=2f(x)f(y)AA x,y in R and f(0)=k, then

Let f(x+y)+f(x-y)=2f(x)f(y) AA x,y in R and f(0)=k , then

Let f be a real valued function satisfying f(x+y)=f(x)+f(y) for all x, y in R and f(1)=2 . Then sum_(k=1)^(n)f(k)=

Let f be a real valued function satisfying f(x+y)=f(x)+f(y) for all x, y in R and f(1)=2 . Then sum_(k=1)^(n)f(k)=

A function f : R -> R^+ satisfies f(x+y)= f(x) f(y) AA x in R If f'(0)=2 then f'(x)=

A function f:R rarr R^(+) satisfies f(x+y)=f(x)f(y)AA x in R If f'(0)=2 then f'(x)=

Let f:R->R be a function such that f(x+y)=f(x)+f(y),AA x, y in R.

Let f:R->R be a function such that f(x+y)=f(x)+f(y),AA x, y in R.

Let f be a real valued function satisfying f(x+y)=f(x)f(y) for all x, y in R such that f(1)=2 . Then , sum_(k=1)^(n) f(k)=

Let f be a real valued function satisfying f(x+y)=f(x)f(y) for all x, y in R such that f(1)=2 . Then , sum_(k=1)^(n) f(k)=