Home
Class 12
MATHS
cos^(- 1)((x^2)/6+sqrt(1-(x^2)/9)sqrt(1-...

`cos^(- 1)((x^2)/6+sqrt(1-(x^2)/9)sqrt(1-(x^2)/4))=cos^(- 1)(x/3)-cos^(- 1)(x/2)` hold for all x belonging to

Promotional Banner

Similar Questions

Explore conceptually related problems

cos^(-1){1/2x^(2)+sqrt(1+x^(2))sqrt(1-x^(2))/(4)}=cos^(-1)(x)/(2)-cos^(-1)x

cos^(-1){1/2x^(2)+sqrt(1+x^(2))sqrt(1-x^(2))/(4)}=cos^(-1)(x/2)-cos^(-1)x

cos^(-1){1/2x^(2)+sqrt(1+x^(2))sqrt(1-x^(2))/(4)}=cos^(-1)(x)/(2)-cos^(-1)x

cos^(-1){1/2x^(2)+sqrt(1+x^(2))sqrt(1-x^(2))/(4)}=cos^(-1)(x/2)-cos^(-1)x

Solve : cos^(-1)(1/2x^2+sqrt(1-x^2).sqrt(1-(x^2)/4))=cos^(-1)x/2-cos^(-1)xdot

cos^(-1){1/2x^(2)+sqrt(1-x^(2))sqrt(1-(x^(2))/(4))}=cos^(-1)((x)/(2))-cos^(-1)x holds for what values of x?

cos^(-1)x sqrt(3)+cos^(-1)x=(pi)/(2)

Prove that cos^(-1)((sqrt(1+x)+sqrt(1-x))/(2))=(pi)/(4)-(1)/(2)cos^(-1)x